A324370 Product of all primes p not dividing n such that the sum of the base-p digits of n is at least p, or 1 if no such prime exists.
1, 1, 2, 1, 6, 1, 6, 3, 10, 1, 6, 1, 210, 15, 2, 3, 30, 5, 210, 21, 110, 15, 30, 5, 546, 21, 14, 1, 30, 1, 462, 231, 1190, 105, 6, 1, 51870, 1365, 70, 21, 2310, 55, 2310, 105, 322, 105, 210, 35, 6630, 663, 286, 33, 330, 55, 798, 57, 290, 15, 30, 1, 930930, 15015, 1430, 2145, 1122, 85, 82110, 2415, 70, 3, 330, 55, 21111090, 285285
Offset: 1
Examples
For p = 2, 3, and 5, the sum of the base p digits of 7 is 1+1+1 = 3 >= 2, 2+1 = 3 >= 3, and 1+2 = 3 < 5, respectively, so a(7) = 2*3 = 6.
Links
- Robert Israel, Table of n, a(n) for n = 1..5000
- Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
- Bernd C. Kellner, On the finiteness of Bernoulli polynomials whose derivative has only integral coefficients, J. Integer Seq. 27 (2024), Article 24.2.8, 11 pp.; arXiv:2310.01325 [math.NT], 2023.
- Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
Crossrefs
Programs
-
Maple
N:= 100: # for a(1)..a(N) V:= Vector(N,1): p:= 1: for iter from 1 do p:= nextprime(p); if p >= N then break fi; for n from p+1 to N do if n mod p <> 0 and convert(convert(n,base,p),`+`)>= p then V[n]:= V[n]*p fi od od: convert(V,list); # Robert Israel, Mar 30 2020 # Alternatively, note that this formula is suggesting offset 0 and a(0) = 1: seq(denom(diff(bernoulli(n, x), x)), n = 1..51); # Peter Luschny, Oct 13 2023
-
Mathematica
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]]; DD2[n_] := Times @@ Select[Prime[Range[PrimePi[(n+1)/(2+Mod[n+1, 2])]]], !Divisible[n, #] && SD[n, #] >= # &]; Table[DD2[n], {n, 1, 100}] (* From Bernd C. Kellner, Oct 12 2023 (Start) *) (* Denominator of first derivative of BP *) k = 1; Table[Denominator[Together[D[BernoulliB[n, x], {x, k}]]], {n, 1, 100}] (* End *)
-
Python
from math import prod from sympy.ntheory import digits from sympy import primefactors, primerange def a(n): nonpf = set(primerange(1, n+1)) - set(primefactors(n)) return prod(p for p in nonpf if sum(digits(n, p)[1:]) >= p) print([a(n) for n in range(1, 75)]) # Michael S. Branicky, Jul 03 2022
Formula
a(n+1) = A195441(n)/A324369(n+1) = A144845(n)/A007947(n+1) = A318256(n). Essentially the same as A318256. - Peter Luschny, Mar 05 2019
From Bernd C. Kellner, Oct 12 2023: (Start)
a(n) = denominator(Bernoulli_n(x)').
k-th derivative: let (n)_m be the falling factorial.
For n > k, a(n-k+1)/gcd(a(n-k+1), (n)_{k-1}) = denominator(Bernoulli_n(x)^(k)). Otherwise, the denominator equals 1. (End)
Comments