cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324322 Numbers k such that Ld(k) == k (mod Rd(k)), where Ld(k) = A067080 and Rd(k) = A067079.

Original entry on oeis.org

12, 13, 14, 15, 16, 17, 18, 19, 32, 43, 52, 54, 65, 72, 73, 76, 87, 92, 94, 98, 103, 352, 461, 571, 792, 803, 1003
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2019

Keywords

Comments

No other term up to 2*10^10. - Giovanni Resta, Feb 22 2019

Examples

			Ld(792) = 792*79*7 = 437976, Rd(792) = 792*92*2 = 145728 and 437976 == 792 (mod 145728).
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(n) local a,k;
    a:=mul(n mod 10^k, k=1..ilog10(n)+1): if a>0 then
    if n=mul(trunc(n/10^k), k=0..ilog10(n)) mod a then n;
    fi; fi; end: seq(P(i),i=1..1100);
  • Mathematica
    Select[Range[10^6], If[#2 != 0, Mod[Times @@ Map[FromDigits, NestWhileList[Most@ # &, IntegerDigits@ #1, Length@ # > 1 &]], #2] == #1] & @@ {#, Times @@ Map[FromDigits, NestWhileList[Rest@ # &, IntegerDigits@ #, Length@ # > 1 &]]} &] (* Michael De Vlieger, Feb 25 2019 *)
  • PARI
    Ld(n) = my(t=n); while(n\=10, t*=n); t; \\ A067080
    Rd(n) = prod(k=1, logint(n+!n, 10)+1, n-n\10^k*10^k); \\ A067079
    isok(k) = if (k % 10, (Ld(k) % Rd(k)) == k); \\ Michel Marcus, Jan 15 2023