cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A329902 Primorial deflation of the n-th highly composite number: the unique integer k such that A108951(k) = A002182(n).

Original entry on oeis.org

1, 2, 4, 3, 6, 12, 9, 24, 10, 20, 15, 40, 30, 60, 28, 21, 56, 42, 84, 63, 168, 126, 336, 140, 66, 189, 280, 132, 99, 264, 198, 528, 220, 396, 297, 440, 792, 156, 117, 312, 234, 624, 260, 468, 351, 520, 936, 390, 1040, 1872, 780, 585, 306, 1560, 340, 612, 459, 680, 1224, 510, 1360, 2448, 1020, 765, 342, 2040, 1530, 684, 513
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Map[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, Take[Import["https://oeis.org/b002182.txt", "Data"][[All, -1]], 69] ] (* Michael De Vlieger, Jan 13 2020, imports b-file at A002182 *)

Formula

a(n) = A329900(A002182(n)) = A319626(A002182(n)).
a(n) = A181815(A306802(n)).
A108951(a(n)) = A002182(n). [Highly composite numbers (undeflated)]
A056239(a(n)) = A112778(n). [Number of prime factors, counted with multiplicity]
A001222(a(n)) = A112779(n). [Largest exponent in the prime factorization]
A329605(a(n)) = A002183(n). [Number of divisors]
A329040(a(n)) = A324381(n).
A324888(a(n)) = A324382(n).
a(A330748(n)) = A330743(n).

Extensions

More linking formulas added by Antti Karttunen, Jan 13 2020

A324382 Minimal number of primorials that add to the n-th highly composite number: a(n) = A276150(A002182(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 2, 4, 2, 4, 6, 2, 6, 6, 4, 6, 8, 2, 4, 6, 8, 12, 16, 20, 12, 14, 18, 12, 12, 12, 12, 12, 12, 12, 24, 8, 8, 8, 4, 16, 8, 16, 8, 16, 24, 16, 32, 6, 14, 30, 12, 18, 18, 24, 12, 18, 18, 24, 18, 36, 8, 14, 32, 28, 6, 24, 38, 12, 18, 36, 20, 24, 30, 40, 26, 10, 40, 20, 30, 18, 38, 26, 36, 36, 24, 24, 44, 50, 48, 14, 42
Offset: 1

Views

Author

Antti Karttunen, Feb 26 2019

Keywords

Comments

Among the first 10000 highly composite numbers, only in two cases a(n) < A112779(n). This happens on A002182(12) = 240 and A002182(18) = 2520. Note that A112779(n) gives the number of primorials needed when A002182(n) is expressed as a product [not as a sum] of primorials.

Examples

			For n=12, A002182(12) = 240, which is written as "11000" in primorial base (A049345) because 240 = 1*A002110(4) + 1*A002110(3) = 210+30, thus a(12) = 1+1 = 2. (Note that 240 = 30*2*2*2).
For n=18, A002182(18) = 2520 = "110000" in primorial base because 2520 = 1*A002110(5) + 1*A002110(4) = 2310+210, thus a(18) = 1+1 = 2. (Note that 2520 = 210*6*2).
For n=26, A002182(26) = 45360 = "1670000" in primorial base because 45360 = 1*A002110(6) + 6*A002110(5) + 7*A002110(4), thus a(26) = 1+6+7 = 14. (Note that 45360 = 210*6*6*6).
		

Crossrefs

Programs

Formula

a(n) = A276150(A002182(n)).
a(n) >= A324381(n).

A324581 a(n) = A276086(A002182(n)).

Original entry on oeis.org

2, 3, 9, 5, 25, 625, 35, 875, 49, 2401, 117649, 77, 184877, 456533, 14641, 1771561, 214358881, 143, 20449, 2924207, 418161601, 8550986578849, 174859124550883201, 3575694237941010577249, 23298085122481, 1599034490244763, 32698656291015158587, 30466726698629, 39841104144361, 52099905419549, 89093921102069, 152355876914189, 260537564663909
Offset: 1

Views

Author

Antti Karttunen, Mar 09 2019

Keywords

Comments

Note that gcd(a(n), A002182(n)) = A324198(A002182(n)) = 1 for all n because each term of A002182 is a product of primorial numbers (A002110).

Crossrefs

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 20], s = DivisorSigma[0, Range[10^5]], t}, t = Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]; Array[Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ #, Reverse@ #} &@ IntegerDigits[(*a002182[[#]]*)t[[#]], b] &, Length@ t]] (* Michael De Vlieger, Mar 18 2019 *)
  • PARI
    \\ A002182 assumed to be precomputed
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324581(n) = A276086(A002182(n));

Formula

a(n) = A276086(A002182(n)).
a(n) = A324582(n)/A002182(n).
A001221(a(n)) = A324381(n).
A001222(a(n)) = A324382(n).
Showing 1-3 of 3 results.