cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324428 Number T(n,k) of labeled cyclic chord diagrams with n chords such that every chord has length at least k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 3, 1, 15, 4, 1, 105, 31, 7, 1, 945, 293, 68, 11, 1, 10395, 3326, 837, 159, 18, 1, 135135, 44189, 11863, 2488, 381, 29, 1, 2027025, 673471, 189503, 43169, 7601, 879, 47, 1, 34459425, 11588884, 3377341, 822113, 160784, 23559, 2049, 76, 1, 654729075, 222304897, 66564396, 17066007, 3621067, 607897, 72989, 4788, 123, 1
Offset: 1

Views

Author

Alois P. Heinz, Feb 27 2019

Keywords

Comments

T(n,k) is defined for all n,k >= 0. The triangle contains only the terms with 1 <= k <= n. T(n,0) = A001147(n), T(0,k) = 1, T(n,k) = 0 for k > n > 0.

Examples

			Triangle T(n,k) begins:
        1;
        3,      1;
       15,      4,      1;
      105,     31,      7,     1;
      945,    293,     68,    11,    1;
    10395,   3326,    837,   159,   18,   1;
   135135,  44189,  11863,  2488,  381,  29,  1;
  2027025, 673471, 189503, 43169, 7601, 879, 47, 1;
  ...
		

Crossrefs

T(n,n-1) gives A000204.

Programs

  • Maple
    b:= proc(n, f, m, l, j) option remember; (k-> `if`(n `if`(n=0 or k<2, doublefactorial(2*n-1),
                  b(2*n-k+1, [1$k-1], 0, [0$k-1], k-1)):
    seq(seq(T(n, k), k=1..n), n=1..10);
  • Mathematica
    b[n_, f_List, m_, l_List, j_] := b[n, f, m, l, j] = Function[k, If[n < Total[f] + m + Total[l], 0, If[n == 0, 1, Sum[If[f[[i]] == 0, 0, b[n - 1, ReplacePart[f, i -> 0], m + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 0], Max[0, j - 1]]],{i, Max[1, j + 1], Min[k, n - 1]}] + If[m == 0, 0, m*b[n - 1, f, m - 1 + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 0], Max[0, j - 1]]] + b[n - 1, f, m + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 1], Max[0, j - 1]]]]][Length[l]];
    T[n_, k_] := If[n == 0 || k < 2, 2^(n-1) Pochhammer[3/2, n-1], b[2n-k+1, Table[1, {k-1}], 0, Table[0, {k-1}], k-1]];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 27 2020, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{j=k..n} A324429(n,j).