A324441 a(n) = Product_{k1=1..n, k2=1..n, k3=1..n, k4=1..n} (k1 + k2 + k3 + k4).
1, 4, 2240421120000, 2357018782335863659143506877669927151046989269393693317529600000000000000
Offset: 0
Keywords
Programs
-
Maple
a:= n-> mul(mul(mul(mul(i+j+k+m, i=1..n), j=1..n), k=1..n), m=1..n): seq(a(n), n=0..4); # Alois P. Heinz, Jun 24 2023
-
Mathematica
Table[Product[k1 + k2 + k3 + k4, {k1, 1, n}, {k2, 1, n}, {k3, 1, n}, {k4, 1, n}], {n, 1, 5}]
Formula
Limit_{n->oo} (a(n)^(1/n^4))/n = 2^(76/3) * 3^(-27/2) * exp(-25/12) = exp(Integral_{k1=0..1, k2=0..1, k3=0..1, k4=0..1} log(k1 + k2 + k3 + k4) dk4 dk3 dk2 dk1) = 1.9062335728830251698721203...
Extensions
a(0)=1 prepended by Alois P. Heinz, Jun 24 2023
Comments