A324460 Numbers m > 1 that have a strict s-decomposition.
45, 96, 225, 325, 405, 576, 637, 640, 891, 1225, 1377, 1408, 1536, 1701, 1729, 2025, 2541, 2821, 3321, 3751, 3825, 4225, 4608, 4961, 6400, 6517, 6525, 7381, 7840, 8125, 8281, 9216, 9537, 9801, 10625, 10935, 12025, 12288, 12825, 12936, 13125, 13312, 13357
Offset: 1
Examples
Since 576 = 2^4 * 6^2 with s_2(576) = 2 and s_6(576) = 6, 576 is a member.
Links
- Bernd C. Kellner, Table of n, a(n) for n = 1..254
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), Article #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
Programs
-
Mathematica
s[n_, g_] := If[n < 1 || g < 2, 0, Plus @@ IntegerDigits[n, g]]; HasDecompS[m_] := Module[{E0, EV, G, R, k, n, v}, If[m < 1 || !CompositeQ[m], Return[False]]; G = Select[Divisors[m], s[m, #] == # &]; n = Length[G]; If[n < 2, Return[False]]; E0 = Array[0 &, n]; EV = Array[v, n]; R = Solve[Product[G[[k]]^EV[[k]], {k, 1, n}] == m && EV >= E0, EV, Integers]; Return[R != {}]]; Select[Range[10^4], HasDecompS[#] &]
Comments