cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324483 Expansion of (1-x-x^2)^2*(1+x-x^2)^2/((1-3*x+x^2)*(1-x)^2*(1+x)^4).

Original entry on oeis.org

1, 1, 1, 6, 12, 36, 91, 241, 632, 1651, 4333, 11328, 29684, 77678, 203415, 532483, 1394144, 3649813, 9555465, 25016378, 65493916, 171465080, 448901667, 1175239525, 3076817368, 8055212055, 21088819397, 55211245460, 144544917748
Offset: 0

Views

Author

N. J. A. Sloane, Mar 12 2019

Keywords

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1-x-x^2)^2*(1+x-x^2)^2/((1-3*x+x^2)*(1-x)^2*(1+x)^4)); // Vincenzo Librandi, Mar 13 2019
    
  • Mathematica
    CoefficientList[Series[(1 - x - x^2)^2 (1 + x - x^2)^2 / ((1 - 3 x + x^2) (1 - x)^2 (1 + x)^4), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 13 2019 *)
    LinearRecurrence[{1,6,-1,-10,-1,6,1,-1},{1,1,1,6,12,36,91,241,632},30] (* Harvey P. Dale, Sep 06 2019 *)
  • PARI
    Vec((1 + x - x^2)^2*(1 - x - x^2)^2 / ((1 - x)^2*(1 + x)^4*(1 - 3*x + x^2)) + O(x^30)) \\ Colin Barker, Mar 13 2019

Formula

G.f.: (1-x-x^2)^2*(1+x-x^2)^2/((1-3*x+x^2)*(1-x)^2*(1+x)^4).
From Colin Barker, Mar 13 2019: (Start)
a(n) = 2^(-4-n)*(-768*sqrt(5)*((3-sqrt(5))^n - (3+sqrt(5))^n) - 5*(517*(-2)^n + 75*2^n)*n + 25*(-1)^n*2^(1+n)*n^3) / 375 for n>1.
a(n) = a(n-1) + 6*a(n-2) - a(n-3) - 10*a(n-4) - a(n-5) + 6*a(n-6) + a(n-7) - a(n-8) for n>8.
(End)