A324484 Inflation orbit counts b^{(2)}_n for 2D cut and project patterns with tau-inflation.
1, 0, 15, 24, 120, 240, 840, 2000, 5760, 14520, 39600, 102120, 271440, 706440, 1860360, 4860000, 12752040, 33356160, 87403800, 228750960, 599073720, 1568199600, 4106118240, 10749438000, 28143753000, 73679945040, 192900147840, 505015608720, 1322157322200, 3461443490760
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..2000
- M. Baake, J. Hermisson, and P. Pleasants, The torus parametrization of quasiperiodic LI-classes, J. Phys. A 30 (1997), no. 9, 3029-3056. See Table 4.
Programs
-
PARI
a001350(n) = fibonacci(n+1)+fibonacci(n-1)-1-(-1)^n; a(n) = sumdiv(n, d, moebius(n/d)*a001350(d)^2); \\ Seiichi Manyama, Apr 29 2021
Formula
a(n) = Sum_{d|n} mu(n/d) * A001350(d)^2 = Sum_{d|n} mu(n/d) * A152152(d). - Seiichi Manyama, Apr 29 2021
Extensions
More terms from Seiichi Manyama, Apr 29 2021