A324513 Number of aperiodic cycle necklaces with n vertices.
1, 0, 0, 0, 2, 7, 51, 300, 2238, 18028, 164945, 1662067, 18423138, 222380433, 2905942904, 40864642560, 615376173176, 9880203467184, 168483518571789, 3041127459127222, 57926238289894992, 1161157775616335125, 24434798429947993043, 538583682037962702384
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Gus Wiseman, Inequivalent representatives of the a(6) = 7 aperiodic cycle necklaces.
- Gus Wiseman, Inequivalent representatives of the a(7) = 51 aperiodic cycle necklaces.
Crossrefs
Programs
-
Mathematica
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])]; Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1,1]]&/@Permutations[Range[n]]],#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&&UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]&]],{n,8}]
-
PARI
a(n)={if(n<3, n==0||n==1, (if(n%2, 0, -(n/2-1)!*2^(n/2-2)) + sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n^2))/2)} \\ Andrew Howroyd, Aug 19 2019
Formula
a(n) = A324512(n)/n.
a(2*n+1) = A064852(2*n+1)/2 for n > 0; a(2*n) = (A064852(2*n) - A002866(n-1))/2 for n > 1. - Andrew Howroyd, Aug 16 2019
Extensions
Terms a(10) and beyond from Andrew Howroyd, Aug 19 2019
Comments