A324521 Numbers > 1 where the maximum prime index is less than or equal to the number of prime factors counted with multiplicity.
2, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 30, 32, 36, 40, 45, 48, 50, 54, 56, 60, 64, 72, 75, 80, 81, 84, 90, 96, 100, 108, 112, 120, 125, 126, 128, 135, 140, 144, 150, 160, 162, 168, 176, 180, 189, 192, 196, 200, 210, 216, 224, 225, 240, 243, 250, 252, 256
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 2: {1} 4: {1,1} 6: {1,2} 8: {1,1,1} 9: {2,2} 12: {1,1,2} 16: {1,1,1,1} 18: {1,2,2} 20: {1,1,3} 24: {1,1,1,2} 27: {2,2,2} 30: {1,2,3} 32: {1,1,1,1,1} 36: {1,1,2,2} 40: {1,1,1,3} 45: {2,2,3} 48: {1,1,1,1,2}
Links
- Matthieu Pluntz, Table of n, a(n) for n = 1..10929 (up to a(n) = 2^21)
Crossrefs
Programs
-
Maple
with(numtheory): q:= n-> is(pi(max(factorset(n)))<=bigomega(n)): select(q, [$2..300])[]; # Alois P. Heinz, Mar 07 2019
-
Mathematica
Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]<=PrimeOmega[#]&]
-
PARI
isok(m) = (m>1) && (primepi(vecmax(factor(m)[, 1])) <= bigomega(m)); \\ Michel Marcus, Nov 14 2022
-
Python
from sympy import factorint, primepi def ok(n): f = factorint(n) return primepi(max(f)) <= sum(f.values()) print([k for k in range(2, 257) if ok(k)]) # Michael S. Branicky, Nov 15 2022
Comments