cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A324389 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A009194(n), A318458(n)] for all other numbers, except f(1) = -1.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 3, 2, 2, 5, 3, 6, 3, 7, 8, 2, 3, 9, 3, 10, 3, 11, 3, 12, 2, 13, 14, 15, 3, 16, 3, 2, 17, 18, 3, 19, 3, 11, 3, 20, 3, 21, 3, 22, 23, 7, 3, 6, 2, 24, 25, 26, 3, 27, 28, 29, 28, 30, 3, 31, 3, 32, 33, 2, 3, 34, 3, 18, 17, 35, 3, 36, 3, 5, 3, 37, 3, 38, 3, 39, 2, 18, 3, 40, 41, 11, 17, 42, 3, 43, 44, 45, 3, 46, 47, 12, 3, 48, 23, 49, 3, 50, 3
Offset: 1

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Comments

For all i, j:
A324401(i) = A324401(j) => a(i) = a(j).
Regarding the scatter plot of this sequence, see also comments in A318310. - Antti Karttunen, Feb 04 2020

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A009194(n) = gcd(n,sigma(n));
    A318458(n) = bitand(n,sigma(n)-n);
    Aux324389(n) = if(1==n,-1,[A009194(n), A318458(n)]);
    v324389 = rgs_transform(vector(up_to,n,Aux324389(n)));
    A324389(n) = v324389[n];

A324531 Lexicographically earliest sequence such that for all i, j >= 1, a(i) = a(j) => f(i) = f(j), where f(n) = [A278222(n), A318458(n)] for all other numbers, except f(1) = 0.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 10, 9, 11, 12, 2, 4, 13, 9, 14, 15, 16, 17, 10, 18, 19, 20, 21, 17, 22, 23, 2, 4, 7, 9, 24, 15, 16, 17, 25, 15, 26, 27, 28, 29, 30, 31, 10, 18, 32, 33, 34, 27, 35, 36, 37, 38, 39, 40, 41, 31, 42, 43, 2, 4, 44, 9, 7, 15, 45, 17, 46, 15, 47, 27, 48, 27, 49, 31, 50, 51, 51, 27, 52, 53, 54, 55, 56, 27, 57, 58, 59, 55, 60, 61, 10, 9, 48
Offset: 1

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Comments

For all i, j:
a(i) = a(j) => A324532(i) = A324532(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A278222(n) = A046523(A005940(1+n));
    A318458(n) = bitand(n,sigma(n)-n);
    Aux324531(n) = if(1==n,0,[A278222(n), A318458(n)]);
    v324531 = rgs_transform(vector(up_to,n,Aux324531(n)));
    A324531(n) = v324531[n];

Formula

For n >= 1, a(2^n) = 2.

A324532 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A000120(n), A318458(n)] for all other numbers, except f(1) = 0.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 5, 2, 6, 7, 5, 6, 5, 8, 9, 2, 3, 10, 5, 11, 5, 12, 13, 6, 14, 15, 9, 16, 13, 17, 18, 2, 3, 6, 5, 19, 5, 12, 13, 20, 5, 21, 13, 22, 23, 17, 18, 6, 14, 21, 24, 25, 13, 26, 27, 14, 24, 28, 18, 29, 18, 30, 31, 2, 3, 32, 5, 6, 5, 33, 13, 34, 5, 35, 13, 36, 13, 37, 18, 38, 14, 14, 13, 39, 40, 41, 18, 42, 13, 43, 27, 44, 18, 45, 46, 6, 5, 36, 23, 47, 13
Offset: 1

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A318458(n) = bitand(n,sigma(n)-n);
    Aux324532(n) = if(1==n,0,[hammingweight(n), A318458(n)]);
    v324532 = rgs_transform(vector(up_to,n,Aux324532(n)));
    A324532(n) = v324532[n];

Formula

For n >= 1, a(2^n) = 2.

A336157 Lexicographically earliest infinite sequence such that a(i) = a(j) => A318458(i) = A318458(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 1, 4, 5, 2, 6, 2, 7, 8, 1, 2, 9, 2, 10, 11, 3, 2, 6, 4, 12, 13, 14, 2, 15, 2, 1, 11, 6, 11, 16, 2, 3, 11, 17, 2, 18, 2, 19, 20, 7, 2, 6, 4, 21, 22, 23, 2, 24, 22, 6, 22, 17, 2, 25, 2, 26, 27, 1, 11, 28, 2, 6, 11, 28, 2, 29, 2, 5, 30, 31, 11, 32, 2, 31, 33, 6, 2, 34, 35, 3, 11, 36, 2, 37, 22, 38, 11, 39, 40, 6, 2, 41, 20, 42, 2, 43, 2, 44, 45
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A318458(n), A336158(n)].
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j).
A324401(i) = A324401(j) => a(i) = a(j).

Crossrefs

Cf. A324389, A324530, A324531, A324532 for other similar constructions (also similar by their scatter plots).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    A318458(n) = bitand(n, sigma(n)-n);
    Aux336157(n) = [A318458(n), A336158(n)];
    v336157 = rgs_transform(vector(up_to, n, Aux336157(n)));
    A336157(n) = v336157[n];
Showing 1-4 of 4 results.