cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336158 The least number with the prime signature of the odd part of n: a(n) = A046523(A000265(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 6, 1, 2, 4, 2, 2, 6, 2, 2, 2, 4, 2, 8, 2, 2, 6, 2, 1, 6, 2, 6, 4, 2, 2, 6, 2, 2, 6, 2, 2, 12, 2, 2, 2, 4, 4, 6, 2, 2, 8, 6, 2, 6, 2, 2, 6, 2, 2, 12, 1, 6, 6, 2, 2, 6, 6, 2, 4, 2, 2, 12, 2, 6, 6, 2, 2, 16, 2, 2, 6, 6, 2, 6, 2, 2, 12, 6, 2, 6, 2, 6, 2, 2, 4, 12, 4, 2, 6, 2, 2, 30
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    
  • Python
    from math import prod
    from sympy import factorint, prime
    def A336158(n): return prod(prime(i+1)**e for i,e in enumerate(sorted(factorint(n>>(~n&n-1).bit_length()).values(),reverse=True))) # Chai Wah Wu, Sep 16 2022

Formula

a(n) = A046523(A000265(n)) = A046523(A064989(n)).
A000005(a(n)) = A001227(n).
A001221(a(n)) = A005087(n).
A001222(a(n)) = A087436(n).

A336159 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 6, 4, 7, 1, 3, 5, 6, 3, 8, 6, 9, 2, 10, 6, 11, 4, 9, 7, 12, 1, 13, 3, 14, 5, 15, 6, 16, 3, 15, 8, 17, 6, 18, 9, 19, 2, 10, 10, 20, 6, 17, 11, 21, 4, 16, 9, 22, 7, 19, 12, 23, 1, 13, 13, 6, 3, 8, 14, 9, 5, 15, 15, 18, 6, 24, 16, 19, 3, 25, 15, 17, 8, 26, 17, 27, 6, 17, 18, 28, 9, 27, 19, 29, 2, 6, 10, 30, 10, 17, 20, 22, 6, 31
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278222(n), A336158(n)], i.e., of the ordered pair [A046523(A005940(1+n)), A046523(A000265(n))].
For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A336158(n) = A046523(A000265(n));
    Aux336159(n) = [A278222(n), A336158(n)];
    v336159 = rgs_transform(vector(up_to, n, Aux336159(n)));
    A336159(n) = v336159[n];
Showing 1-2 of 2 results.