cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324555 a(n) = the smallest number m such that gcd(tau(m), pod(m)) = n where tau(k) = the number of the divisors of k (A000005) and pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 2, 9, 6, 400, 12, 3136, 24, 36, 80, 123904, 60, 692224, 448, 2025, 120, 18939904, 180, 94633984, 240, 35721, 11264, 2218786816, 360, 10000, 53248, 900, 1344, 225754218496, 720, 1031865892864, 840, 7144929, 1114112, 1960000, 1260, 94076963651584, 4980736
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Comments

a(n) = the smallest number m such that A306671(m) = n.
If a(17) exists, it must be bigger than 10^7.

Examples

			For n=3; a(3) = 9 because gcd(tau(9), pod(9)) = gcd (3, 27) = 3 and 9 is the smallest.
		

Crossrefs

Programs

  • Magma
    [Min([n: n in[1..10^6] | GCD(NumberOfDivisors(n), &*[d: d in Divisors(n)]) eq k]): k in [1..16]]
    
  • Mathematica
    Array[Block[{m = 1}, While[GCD[DivisorSigma[0, m], Times @@ Divisors@ m] != #, m++]; m] &, 16] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    a(n) = {my(k=1, vk = divisors(k)); while(gcd(#vk, vecprod(vk)) != n, k++; vk = divisors(k)); k;} \\ Michel Marcus, Mar 06 2019

Extensions

a(17)-a(38) from Jon E. Schoenfield, Mar 07 2019