A324555 a(n) = the smallest number m such that gcd(tau(m), pod(m)) = n where tau(k) = the number of the divisors of k (A000005) and pod(k) = the product of the divisors of k (A007955).
1, 2, 9, 6, 400, 12, 3136, 24, 36, 80, 123904, 60, 692224, 448, 2025, 120, 18939904, 180, 94633984, 240, 35721, 11264, 2218786816, 360, 10000, 53248, 900, 1344, 225754218496, 720, 1031865892864, 840, 7144929, 1114112, 1960000, 1260, 94076963651584, 4980736
Offset: 1
Keywords
Examples
For n=3; a(3) = 9 because gcd(tau(9), pod(9)) = gcd (3, 27) = 3 and 9 is the smallest.
Programs
-
Magma
[Min([n: n in[1..10^6] | GCD(NumberOfDivisors(n), &*[d: d in Divisors(n)]) eq k]): k in [1..16]]
-
Mathematica
Array[Block[{m = 1}, While[GCD[DivisorSigma[0, m], Times @@ Divisors@ m] != #, m++]; m] &, 16] (* Michael De Vlieger, Mar 24 2019 *)
-
PARI
a(n) = {my(k=1, vk = divisors(k)); while(gcd(#vk, vecprod(vk)) != n, k++; vk = divisors(k)); k;} \\ Michel Marcus, Mar 06 2019
Extensions
a(17)-a(38) from Jon E. Schoenfield, Mar 07 2019
Comments