A324597 a(n) = n!^(4*n) * Product_{k=1..n} binomial(n + 1/k^3, n).
1, 2, 918, 11592504000, 86712397842439769400000, 3472997049383321958747830928094241894400000, 4152034082374349458781848863476555783741415883758270213129361920000000
Offset: 0
Keywords
Programs
-
Maple
a:= n-> n!^(4*n)*mul(binomial(n+1/k^3, n), k=1..n): seq(a(n), n=0..7); # Alois P. Heinz, Jun 24 2023
-
Mathematica
Table[n!^(4*n) * Product[Binomial[n + 1/j^3, n], {j, 1, n}], {n, 1, 8}]
Formula
a(n) ~ n!^(4*n) * n^Zeta(3) / (Product_{j>=1} Gamma(1 + 1/j^3)).
a(n) ~ n^(4*n^2 + 2*n + Zeta(3)) * (2*Pi)^(2*n) / exp(4*n^2 - 1/3 - gamma*Zeta(3) + c), where c = A306778 = Sum_{k>=2} (-1)^k*Zeta(k)*Zeta(3*k)/k.
Extensions
a(0)=1 prepended by Alois P. Heinz, Jun 24 2023
Comments