cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A324717 Xor-Moebius transform of A324716, where A324716(n) = bitxor(2*A156552(n), bitand(2*A156552(n), A323243(n))).

Original entry on oeis.org

0, 2, 4, 0, 8, 14, 16, 4, 4, 24, 32, 26, 64, 50, 8, 0, 128, 28, 256, 48, 20, 96, 512, 48, 8, 192, 4, 102, 1024, 26, 2048, 24, 100, 384, 24, 28, 4096, 770, 64, 96, 8192, 118, 16384, 192, 8, 1536, 32768, 104, 16, 58, 388, 384, 65536, 52, 40, 196, 256, 3074, 131072, 114, 262144, 6144, 68, 8, 200, 166, 524288, 772, 1540, 120, 1048576
Offset: 1

Views

Author

Antti Karttunen, Mar 15 2019

Keywords

Comments

Properties of Xor-Moebius transform are explained in A295901.

Crossrefs

Programs

  • PARI
    A324717(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A324716(d)))); (v); }; \\ For other code, see A324716.

A324815 a(n) = 2*A156552(n) AND A323243(n), where AND is bitwise-and, A004198.

Original entry on oeis.org

0, 0, 0, 4, 0, 2, 0, 8, 12, 0, 0, 4, 0, 2, 16, 24, 0, 10, 0, 4, 36, 0, 0, 8, 24, 0, 24, 0, 0, 32, 0, 32, 4, 0, 40, 32, 0, 2, 128, 8, 0, 2, 0, 4, 36, 0, 0, 16, 48, 18, 4, 4, 0, 26, 72, 8, 512, 2, 0, 4, 0, 0, 12, 104, 8, 0, 0, 0, 4, 2, 0, 72, 0, 0, 32, 0, 80, 0, 0, 16, 8, 0, 0, 20, 256, 0, 2048, 0, 0, 74, 128, 0, 0, 0, 520, 56, 0, 32, 128, 64, 0, 2, 0, 8, 64
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2019

Keywords

Crossrefs

Programs

Formula

a(n) = 2*A156552(n) AND A323243(n), where AND is A004198.
a(n) = 2*A156552(n) - A324716(n) = 2*A156552(n) XOR A324716(n), where XOR is A003987.
For n > 1, a(n) = A318468(A156552(n)).
a(p) = 0 for all primes p.
a(A324201(n)) = A139256(n).
A000120(a(n)) = A324816(n).

A324722 Numbers k such that A324658(A156552(k)) is zero.

Original entry on oeis.org

9, 21, 25, 35, 49, 55, 77, 95, 121, 125, 133, 143, 169, 185, 203, 209, 221, 265, 289, 299, 301, 319, 323, 343, 361, 371, 377, 413, 427, 437, 445, 451, 473, 481, 493, 497, 511, 527, 529, 531, 539, 553, 559, 583, 589, 605, 611, 623, 629, 667, 679, 689, 703, 707, 737, 763, 767, 779, 791, 793, 799, 805, 817, 841, 845, 847, 851, 869, 871, 899, 901
Offset: 1

Views

Author

Antti Karttunen, Mar 15 2019

Keywords

Comments

First even term is A005940(1+A324647(1)) = A005940(1+1116225) = 1912898. - Typo corrected by Antti Karttunen, Jul 21 2021

Crossrefs

Positions of zeros in A324716.

Programs

Showing 1-3 of 3 results.