A324726 Numbers k such that 2*k is equal to 2*k OR sigma(k), where OR is bitwise-or, A003986, and sigma is the sum of divisors function.
3, 6, 7, 14, 15, 21, 22, 28, 31, 46, 55, 57, 62, 63, 86, 92, 93, 94, 105, 110, 111, 124, 127, 154, 170, 171, 188, 189, 190, 201, 213, 215, 217, 231, 237, 248, 249, 250, 253, 254, 255, 310, 315, 316, 351, 357, 363, 369, 374, 376, 381, 382, 393, 430, 434, 447, 465, 469, 473, 483, 489, 494, 496, 497, 501, 506, 508, 511, 602
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
Select[Range[1000], 2*# == BitOr[2*#, DivisorSigma[1, #]] &] (* Paolo Xausa, Mar 11 2024 *)
-
PARI
for(n=1, oo, if(((2*n)==bitor(2*n, sigma(n))), print1(n, ", ")));
Formula
{k such that 2*k = A318466(k)}.
Comments