cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A324652 Numbers k such that A318468(k) (bitwise-AND of 2*k and sigma(k)) is equal to 2*k.

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 36, 40, 48, 56, 80, 88, 96, 100, 104, 112, 160, 176, 192, 196, 200, 204, 208, 220, 224, 260, 264, 272, 304, 320, 336, 352, 368, 384, 392, 416, 448, 464, 496, 544, 550, 580, 608, 640, 648, 650, 672, 704, 736, 768, 784, 832, 896, 928, 992, 1032, 1040, 1044, 1056, 1060, 1068, 1088, 1104, 1120, 1184, 1216
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Comments

Positions of zeros in A324658, fixed points of A324659.
Intersection with A324649 gives A324643.
Intersection with A324726 gives A000396.
In the range 1..2^32 there are only 22 odd terms. See A324647.

Crossrefs

Some subsequences: A000396, A324643, A324647 (the odd terms).

Programs

  • Mathematica
    Select[Range[2000], 2*# == BitAnd[2*#, DivisorSigma[1, #]] &] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    for(n=1,oo,if((n+n)==bitand(2*n,sigma(n)), print1(n, ", ")))

A324727 Odd numbers such that 2n is equal to A318466(n), bitor(2*n,sigma(n)), where bitor is A003986.

Original entry on oeis.org

3, 7, 15, 21, 31, 55, 57, 63, 93, 105, 111, 127, 171, 189, 201, 213, 215, 217, 231, 237, 249, 253, 255, 315, 351, 357, 363, 369, 381, 393, 447, 465, 469, 473, 483, 489, 497, 501, 511, 651, 705, 747, 759, 789, 813, 831, 833, 879, 889, 895, 917, 959, 987, 989, 1001, 1015, 1023, 1155, 1365, 1377, 1407, 1467, 1491, 1503, 1505, 1515, 1533, 1595
Offset: 1

Views

Author

Antti Karttunen, Mar 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 2000, 2], 2*# == BitOr[2*#, DivisorSigma[1, #]] &] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    for(n=1,oo,if((n%2)&&((2*n)==bitor(2*n,sigma(n))),print1(n,", ")));

A324723 Numbers n such that bitor(2*k, sigma(k)) == 2k, where k = A156552(n).

Original entry on oeis.org

4, 8, 9, 16, 27, 30, 32, 45, 64, 72, 125, 128, 135, 144, 243, 250, 256, 270, 315, 405, 420, 480, 490, 512, 576, 600, 675, 756, 810, 825, 875, 988, 1000, 1024, 1152, 1155, 1210, 1215, 1458, 1470, 1600, 1690, 1716, 1728, 1920, 2048, 2100, 2187, 2250, 2430, 2450, 2475, 3125, 3234, 3240, 3600, 3645, 3825, 4320, 4375, 5070, 5103
Offset: 1

Views

Author

Antti Karttunen, Mar 15 2019

Keywords

Crossrefs

Programs

Showing 1-3 of 3 results.