A324736 Number of subsets of {1...n} containing all prime indices of the elements.
1, 2, 3, 4, 7, 9, 15, 22, 43, 79, 127, 175, 343, 511, 851, 1571, 3141, 4397, 8765, 13147, 25243, 46843, 76795, 115171, 230299, 454939, 758203, 1516363, 2916079, 4356079, 8676079, 12132079, 24264157, 45000157, 73800253, 145685053, 291369853, 437054653, 728424421
Offset: 0
Keywords
Examples
The a(0) = 1 through a(6) = 15 subsets: {} {} {} {} {} {} {} {1} {1} {1} {1} {1} {1} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2,3} {1,4} {1,4} {1,4} {1,2,3} {1,2,3} {1,2,3} {1,2,4} {1,2,4} {1,2,4} {1,2,3,4} {1,2,3,4} {1,2,6} {1,2,3,5} {1,2,3,4} {1,2,3,4,5} {1,2,3,5} {1,2,3,6} {1,2,4,6} {1,2,3,4,5} {1,2,3,4,6} {1,2,3,5,6} {1,2,3,4,5,6} An example for n = 18 is {1,2,4,7,8,9,12,16,17,18}, whose elements have the following prime indices: 1: {} 2: {1} 4: {1,1} 7: {4} 8: {1,1,1} 9: {2,2} 12: {1,1,2} 16: {1,1,1,1} 17: {7} 18: {1,2,2} All of these prime indices {1,2,4,7} belong to the subset, as required.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],SubsetQ[#,PrimePi/@First/@Join@@FactorInteger/@DeleteCases[#,1]]&]],{n,0,10}]
-
PARI
pset(n)={my(b=0, f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))} a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i])); ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(!bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<
Andrew Howroyd, Aug 15 2019
Extensions
Terms a(21) and beyond from Andrew Howroyd, Aug 15 2019
Comments