A324741 Number of subsets of {1...n} containing no prime indices of the elements.
1, 2, 3, 5, 8, 13, 19, 30, 54, 96, 156, 248, 440, 688, 1120, 1864, 3664, 5856, 11232, 16896, 31296, 53952, 91008, 137472, 270528, 516720, 863088, 1710816, 3173856, 4836672, 9329472, 14897376, 29788128, 52256448, 88429248, 166037184, 331648704, 497685888, 829449600
Offset: 0
Keywords
Examples
The a(0) = 1 through a(6) = 19 subsets: {} {} {} {} {} {} {} {1} {1} {1} {1} {1} {1} {2} {2} {2} {2} {2} {3} {3} {3} {3} {1,3} {4} {4} {4} {1,3} {5} {5} {2,4} {1,3} {6} {3,4} {1,5} {1,3} {2,4} {1,5} {2,5} {2,4} {3,4} {2,5} {4,5} {3,4} {2,4,5} {3,6} {4,5} {4,6} {5,6} {2,4,5} {3,4,6} {4,5,6} An example for n = 20 is {5,6,7,9,10,12,14,15,16,19,20}, with prime indices: 5: {3} 6: {1,2} 7: {4} 9: {2,2} 10: {1,3} 12: {1,1,2} 14: {1,4} 15: {2,3} 16: {1,1,1,1} 19: {8} 20: {1,1,3} None of these prime indices {1,2,3,4,8} belong to the subset, as required.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
Crossrefs
The maximal case is A324743. The strict integer partition version is A324751. The integer partition version is A324756. The Heinz number version is A324758. An infinite version is A304360.
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,10}]
-
PARI
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))} a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i])); ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(!bitand(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<
Andrew Howroyd, Aug 16 2019
Extensions
Terms a(21) and beyond from Andrew Howroyd, Aug 16 2019
Comments