A324742 Number of subsets of {2...n} containing no prime indices of the elements.
1, 2, 3, 6, 10, 16, 24, 48, 84, 144, 228, 420, 648, 1080, 1800, 3600, 5760, 11136, 16704, 31104, 53568, 90624, 136896, 269952, 515712, 862080, 1708800, 3171840, 4832640, 9325440, 14890752, 29781504, 52245504, 88418304, 166017024, 331628544, 497645568, 829409280
Offset: 1
Keywords
Examples
The a(1) = 1 through a(6) = 16 subsets: {} {} {} {} {} {} {2} {2} {2} {2} {2} {3} {3} {3} {3} {4} {4} {4} {2,4} {5} {5} {3,4} {2,4} {6} {2,5} {2,4} {3,4} {2,5} {4,5} {3,4} {2,4,5} {3,6} {4,5} {4,6} {5,6} {2,4,5} {3,4,6} {4,5,6} An example for n = 20 is {4,5,6,12,17,18,19}, with prime indices: 4: {1,1} 5: {3} 6: {1,2} 12: {1,1,2} 17: {7} 18: {1,2,2} 19: {8} None of these prime indices {1,2,3,7,8} belong to the set, as required.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
The maximal case is A324763. The version for subsets of {1...n} is A324741. The strict integer partition version is A324752. The integer partition version is A324757. The Heinz number version is A324761. An infinite version is A304360.
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[2,n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,10}]
-
PARI
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))} a(n)={my(p=vector(n-1,k,pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i])); ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(!bitand(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<
Andrew Howroyd, Aug 16 2019
Extensions
Terms a(21) and beyond from Andrew Howroyd, Aug 16 2019
Comments