A324747 Numbers k with exactly two distinct prime factors and such that phi(k) is a square, when: k = p^(2s) * q^(2t+1) with s >= 1, t >= 0, p <> q primes.
12, 48, 63, 76, 108, 192, 292, 304, 432, 567, 652, 768, 873, 972, 1168, 1216, 1359, 1728, 2107, 2608, 3072, 3087, 3532, 3888, 4383, 4525, 4612, 4672, 4864, 5103, 5409, 5836, 6543, 6912, 7204, 7857, 8716, 8748, 10372, 10432, 12231, 12288
Offset: 1
Keywords
Examples
63 = 3^2 * 7 and phi(63) = 3*2*6 = 6^2. 1728 = 2^6 * 3^3 and phi(1728) = (2^2 * 3^1 * 2)^2 = 24^2.
Links
- David A. Corneth, Table of n, a(n) for n = 1..9878 (terms <= 10^10)
Programs
-
PARI
isok(k) = {if (issquare(eulerphi(k)), my(expo = factor(k)[,2]); if ((#expo == 2)&& (expo[1]%2) != (expo[2]%2), return (1)););} \\ Michel Marcus, Mar 18 2019
Formula
phi(p^2 * q) = p*(p-1)*(q-1) = m^2 for primitive terms.
phi(k) = (p^(s-1) * q^t * m)^2 with k as in the name of this sequence.
Comments