cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A324744 Number of maximal subsets of {1...n} containing no element whose prime indices all belong to the subset.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 5, 6, 8, 8, 11, 11, 22, 22, 22, 22, 28, 28, 44, 44, 52, 52, 76, 76, 88, 88, 96, 96, 184, 184, 240, 240, 264, 264, 296, 296, 592, 592, 592, 592, 728, 728, 1456, 1456, 1456, 1456, 2912, 2912, 3168, 3168, 3168, 3168, 5568, 5568, 5568, 5568
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(8) = 6 maximal subsets:
  {1}  {1}  {2}    {1,3}  {1,3}    {1,3,6}    {3,4,6}    {1,3,6,7}
       {2}  {1,3}  {2,4}  {1,5}    {1,5,6}    {1,3,6,7}  {1,5,6,7}
                   {3,4}  {3,4}    {3,4,6}    {1,5,6,7}  {3,4,6,8}
                          {2,4,5}  {2,4,5,6}  {2,4,5,6}  {3,6,7,8}
                                              {2,5,6,7}  {2,4,5,6,8}
                                                         {2,5,6,7,8}
		

Crossrefs

The non-maximal case is A324738. The case for subsets of {2...n} is A324762.

Programs

  • Mathematica
    maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
    Table[Length[maxim[Select[Subsets[Range[n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]]],{n,0,10}]
  • PARI
    pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n, k, if(k==1, 1, pset(k))), d=0); for(i=1, #p, d=bitor(d, p[i]));
    my(ismax(b)=for(k=1, #p, if(!bittest(b,k) && bitnegimply(p[k], b), my(e=bitor(b, 1<#p, ismax(b), my(f=bitnegimply(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 27 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 27 2019

A324763 Number of maximal subsets of {2...n} containing no prime indices of the elements.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 6, 6, 6, 6, 10, 10, 16, 16, 16, 16, 24, 24, 48, 48, 48, 48, 84, 84, 84, 84, 84, 84, 144, 144, 228, 228, 228, 228, 228, 228, 420, 420, 420, 420, 648, 648, 1080, 1080, 1080, 1080, 1800, 1800, 1800, 1800, 1800, 1800, 3600, 3600, 3600, 3600, 3600
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(9) = 6 subsets:
  {}  {2}  {2}  {2,4}  {3,4}    {2,4,5}  {2,4,5}  {2,4,5,8}  {2,4,5,8}
           {3}  {3,4}  {2,4,5}  {3,4,6}  {2,5,7}  {2,5,7,8}  {2,5,7,8}
                                {4,5,6}  {3,4,6}  {3,4,6,8}  {3,4,6,8,9}
                                         {3,6,7}  {3,6,7,8}  {3,6,7,8,9}
                                         {4,5,6}  {4,5,6,8}  {4,5,6,8,9}
                                         {5,6,7}  {5,6,7,8}  {5,6,7,8,9}
		

Crossrefs

The non-maximal version is A324742.
The version for subsets of {1...n} is A324741.
An infinite version is A304360.

Programs

  • Mathematica
    maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
    Table[Length[maxim[Select[Subsets[Range[2,n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]]],{n,10}]
  • PARI
    pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n-1, k, pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i]));
    my(ismax(b)=my(e=0); forstep(k=#p, 1, -1, if(bittest(b,k), e=bitor(e,p[k]), if(!bittest(e,k) && !bitand(p[k], b), return(0)) )); 1);
    ((k, b)->if(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 26 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 26 2019

A324755 Number of integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 3, 5, 6, 10, 7, 16, 14, 23, 23, 35, 34, 53, 54, 75, 80, 112, 115, 160, 169, 223, 244, 315, 339, 442, 478, 604, 664, 832, 910, 1131, 1245, 1524, 1689, 2054, 2263, 2743, 3039, 3634, 4042, 4809, 5343, 6326, 7035, 8276, 9217, 10795, 12011
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
For example, (6,2) is such a partition because the prime indices of 6 are {1,2}, which do not all belong to the partition. On the other hand, (5,3) is not such a partition because the prime indices of 5 are {3}, and 3 belongs to the partition.

Examples

			The a(2) = 1 through a(10) = 10 integer partitions (A = 10):
  (2)  (3)  (4)   (5)  (6)    (7)   (8)     (9)    (A)
            (22)       (33)   (43)  (44)    (54)   (55)
                       (42)   (52)  (62)    (63)   (64)
                       (222)        (422)   (72)   (73)
                                    (2222)  (333)  (82)
                                            (522)  (433)
                                                   (442)
                                                   (622)
                                                   (4222)
                                                   (22222)
		

Crossrefs

The subset version is A324739, with maximal case A324762. The strict case is A324750. The Heinz number version is A324760. An infinite version is A324694.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@If[k==1,{},FactorInteger[k]]]]&]],{n,0,30}]

A324760 Heinz numbers of integer partitions not containing 1 or any part whose prime indices all belong to the partition.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 65, 67, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 121, 123, 125, 127, 129, 131, 133, 137, 139
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  33: {2,5}
  35: {3,4}
  37: {12}
  39: {2,6}
  41: {13}
		

Crossrefs

The subset version is A324739, with maximal case A324762. The strict integer partition version is A324750. The integer partition version is A324755. An infinite version is A324694.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!MemberQ[primeMS[#],k_/;SubsetQ[primeMS[#],primeMS[k]]]&]

A324739 Number of subsets of {2...n} containing no element whose prime indices all belong to the subset.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 312, 624, 936, 1872, 3744, 7488, 12480, 24960, 37440, 74880, 142848, 285696, 456192, 912384, 1548288, 3096576, 5308416, 10616832, 15925248, 31850496, 51978240, 103956480, 200835072, 401670144, 771489792, 1542979584, 2314469376
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(6) = 20 subsets:
  {}  {}   {}   {}     {}       {}
      {2}  {2}  {2}    {2}      {2}
           {3}  {3}    {3}      {3}
                {4}    {4}      {4}
                {2,4}  {5}      {5}
                {3,4}  {2,4}    {6}
                       {2,5}    {2,4}
                       {3,4}    {2,5}
                       {4,5}    {2,6}
                       {2,4,5}  {3,4}
                                {3,6}
                                {4,5}
                                {4,6}
                                {5,6}
                                {2,4,5}
                                {2,4,6}
                                {2,5,6}
                                {3,4,6}
                                {4,5,6}
                                {2,4,5,6}
		

Crossrefs

The maximal case is A324762. The case of subsets of {1...n} is A324738. The strict integer partition version is A324750. The integer partition version is A324755. The Heinz number version is A324760. An infinite version is A324694.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[2,n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,10}]
  • PARI
    pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
    ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 16 2019

A325365 Number of maximal subsets of {1..n} containing n such that no two elements have the same sorted prime signature.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 4, 8, 4, 20, 4, 12, 12, 48, 8, 56, 16, 64, 48, 48, 36, 324, 162, 81, 567, 378, 168, 1680, 168, 1848, 264, 264, 264, 2640, 240, 288, 288, 3456, 576, 7488, 1152, 4032, 4032, 2016, 1872, 28080, 9360, 6240, 3360, 6720, 3584, 28672, 6144
Offset: 1

Views

Author

Gus Wiseman, Jul 06 2019

Keywords

Comments

The sorted prime signature (A118914) of a positive integer is the multiset of exponents in its standard factorization into prime numbers.

Examples

			The a(1) = 1 through a(12) = 20 subsets (A = 10, B = 11, C = 12) are the following. The common cardinality of sets in column n is A085089(n).
  1  12  13  124  145  1246  1467  12468  12689  1248A  1468B  12468C
             134       1346        13468  13689  1289A  148AB  1248AC
                       1456        14568  15689  1348A  1689B  12689C
                                   14678  16789  1389A  189AB  1289AC
                                                 1458A         13468C
                                                 1478A         1348AC
                                                 1589A         13689C
                                                 1789A         1389AC
                                                               14568C
                                                               1458AC
                                                               14678C
                                                               1468BC
                                                               1478AC
                                                               148ABC
                                                               15689C
                                                               1589AC
                                                               16789C
                                                               1689BC
                                                               1789AC
                                                               189ABC
		

Crossrefs

Programs

  • Mathematica
    prisig[n_]:=If[n==1,{},Sort[Last/@FactorInteger[n]]];
    Table[Times@@Length/@Split[Sort[Array[prisig,n]]]/Count[Array[prisig,n],prisig[n]],{n,30}]

Formula

a(n) = A326439(n)/A064839(n).

A326439 Number of maximal subsets of {1..n} such that no two elements have the same sorted prime signature.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 4, 8, 16, 20, 20, 24, 36, 48, 48, 56, 112, 128, 192, 240, 288, 324, 324, 486, 567, 1134, 1512, 1680, 1680, 1848, 1848, 2112, 2376, 2640, 2640, 2880, 3168, 3456, 6912, 7488, 14976, 16128, 20160, 24192, 26208, 28080, 28080, 37440, 43680
Offset: 0

Views

Author

Gus Wiseman, Jul 06 2019

Keywords

Comments

The sorted prime signature (A118914) of a positive integer is the multiset of exponents in its standard factorization into prime numbers.

Examples

			The a(0) = 1 through a(9) = 8 subsets:
  {}  {1}  {12}  {12}  {124}  {124}  {1246}  {1246}  {12468}  {12468}
                 {13}  {134}  {134}  {1346}  {1346}  {13468}  {12689}
                              {145}  {1456}  {1456}  {14568}  {13468}
                                             {1467}  {14678}  {13689}
                                                              {14568}
                                                              {14678}
                                                              {15689}
                                                              {16789}
		

Crossrefs

Programs

  • Mathematica
    prisig[n_]:=If[n==1,{},Sort[Last/@FactorInteger[n]]];
    Table[Times@@(Length/@Split[Sort[Array[prisig,n]]]),{n,0,30}]
  • PARI
    a(n)={if(n==0, 1, my(M=Map()); for(i=1, n, my(f=factor(i)[,2], s=sum(k=1, #f, x^f[k]), z); mapput(M, s, if(mapisdefined(M, s, &z), z + 1, 1))); vecprod(Mat(M)[,2]))} \\ Andrew Howroyd, Aug 30 2019
Showing 1-7 of 7 results.