A325404 Number of reversed integer partitions y of n such that the k-th differences of y are distinct for all k >= 0 and are disjoint from the i-th differences for i != k.
1, 1, 1, 1, 2, 3, 2, 4, 4, 4, 5, 7, 5, 11, 12, 11, 12, 20, 15, 24, 22, 27, 28, 37, 28, 45, 43, 48, 50, 66, 58, 79, 72, 84, 87, 112, 106, 135, 128, 158, 147, 186, 180, 218, 220, 265, 246, 304, 303, 354, 340, 412, 418, 471, 463, 538, 543, 642, 600, 711, 755
Offset: 0
Keywords
Examples
The a(1) = 1 through a(12) = 5 reversed partitions (A = 10, B = 11, C = 12): (1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (C) (13) (14) (15) (16) (17) (18) (19) (29) (39) (23) (25) (26) (27) (28) (38) (57) (34) (35) (45) (37) (47) (1B) (46) (56) (2A) (1A) (146)
Links
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Reverse/@IntegerPartitions[n],UnsameQ@@Join@@Table[Differences[#,k],{k,0,Length[#]}]&]],{n,0,30}]
Comments