A324764 Number of anti-transitive rooted identity trees with n nodes.
1, 1, 1, 1, 3, 4, 9, 20, 41, 89, 196, 443, 987, 2246, 5114, 11757, 27122, 62898, 146392, 342204, 802429, 1887882
Offset: 1
Examples
The a(1) = 1 through a(7) = 9 anti-transitive rooted identity trees: o (o) ((o)) (((o))) ((o(o))) (((o(o)))) ((o(o(o)))) (o((o))) ((o((o)))) (o((o(o)))) ((((o)))) (o(((o)))) ((((o(o))))) (((((o))))) (((o)((o)))) (((o((o))))) ((o)(((o)))) ((o(((o))))) (o((((o))))) ((((((o))))))
Links
- Gus Wiseman, The a(9) = 41 anti-transitive rooted identity trees.
Crossrefs
Programs
-
Mathematica
idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]]; Table[Length[Select[idall[n],Intersection[Union@@#,#]=={}&]],{n,10}]
Extensions
a(21)-a(22) from Jinyuan Wang, Jun 20 2020
Comments