A324766 Matula-Goebel numbers of recursively anti-transitive rooted trees.
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 27, 29, 31, 32, 33, 34, 35, 40, 44, 46, 49, 50, 51, 53, 57, 59, 62, 63, 64, 67, 68, 71, 73, 77, 79, 80, 81, 83, 85, 87, 88, 92, 93, 95, 97, 99, 100, 103, 109, 115, 118, 121, 124, 125, 127, 128
Offset: 1
Keywords
Examples
The sequence of recursively anti-transitive rooted trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 3: ((o)) 4: (oo) 5: (((o))) 7: ((oo)) 8: (ooo) 9: ((o)(o)) 10: (o((o))) 11: ((((o)))) 16: (oooo) 17: (((oo))) 19: ((ooo)) 20: (oo((o))) 21: ((o)(oo)) 22: (o(((o)))) 23: (((o)(o))) 25: (((o))((o))) 27: ((o)(o)(o)) 29: ((o((o)))) 31: (((((o))))) 32: (ooooo) 33: ((o)(((o)))) 34: (o((oo))) 35: (((o))(oo)) 40: (ooo((o))) 44: (oo(((o)))) 46: (o((o)(o))) 49: ((oo)(oo)) 50: (o((o))((o)))
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; totantiQ[n_]:=And[Intersection[Union@@primeMS/@primeMS[n],primeMS[n]]=={},And@@totantiQ/@primeMS[n]]; Select[Range[100],totantiQ]
Comments