cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A324765 Number of recursively anti-transitive rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 26, 52, 119, 266, 618, 1432, 3402, 8093, 19505, 47228, 115244, 282529, 696388, 1723400
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is recursively anti-transitive if no branch of a branch of a terminal subtree is a branch of the same subtree.

Examples

			The a(1) = 1 through a(6) = 11 recursively anti-transitive rooted trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (((o)))  (((oo)))   (((ooo)))
                          ((o)(o))   ((o)(oo))
                          (o((o)))   (o((oo)))
                          ((((o))))  (oo((o)))
                                     ((((oo))))
                                     (((o)(o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    nallt[n_]:=Select[Union[Sort/@Join@@(Tuples[nallt/@#]&/@IntegerPartitions[n-1])],Intersection[Union@@#,#]=={}&];
    Table[Length[nallt[n]],{n,10}]

A324767 Number of recursively anti-transitive rooted identity trees with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 9, 17, 33, 63, 126, 254, 511, 1039, 2124, 4371, 9059, 18839, 39339, 82385, 173111, 364829, 771010, 1633313
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is recursively anti-transitive if no branch of a branch of any terminal subtree is a branch of the same subtree. It is an identity tree if there are no repeated branches directly under a common root.
Also the number of finitary sets with n brackets where, at any level, no element of an element of a set is an element of the same set. For example, the a(8) = 9 finitary sets are (o = {}):
{{{{{{{o}}}}}}}
{{{{o,{{o}}}}}}
{{{o,{{{o}}}}}}
{{o,{{{{o}}}}}}
{{{o},{{{o}}}}}
{o,{{{{{o}}}}}}
{o,{{o,{{o}}}}}
{{o},{{{{o}}}}}
{{o},{o,{{o}}}}
The Matula-Goebel numbers of these trees are given by A324766.

Examples

			The a(4) = 1 through a(8) = 9 recursively anti-transitive rooted identity trees:
  (((o)))  (o((o)))   ((o((o))))   (((o((o)))))   ((o)(o((o))))
           ((((o))))  (o(((o))))   ((o)(((o))))   (o((o((o)))))
                      (((((o)))))  ((o(((o)))))   ((((o((o))))))
                                   (o((((o)))))   (((o)(((o)))))
                                   ((((((o))))))  (((o(((o))))))
                                                  ((o)((((o)))))
                                                  ((o((((o))))))
                                                  (o(((((o))))))
                                                  (((((((o)))))))
		

Crossrefs

Cf. A324695, A324751, A324758, A324764 (non-recursive version), A324765 (non-identity version), A324766, A324770, A324839, A324840, A324844.

Programs

  • Mathematica
    iallt[n_]:=Select[Union[Sort/@Join@@(Tuples[iallt/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&&Intersection[Union@@#,#]=={}&];
    Table[Length[iallt[n]],{n,10}]

A324769 Matula-Goebel numbers of fully anti-transitive rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 64, 65, 67, 71, 73, 77, 79, 81, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 129, 131, 133, 137, 139, 143, 147
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully anti-transitive if no proper terminal subtree of any branch of the root is a branch of the root.

Examples

			The sequence of fully anti-transitive rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  13: ((o(o)))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  21: ((o)(oo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  29: ((o((o))))
  31: (((((o)))))
  32: (ooooo)
  35: (((o))(oo))
  37: ((oo(o)))
  41: (((o(o))))
  43: ((o(oo)))
  47: (((o)((o))))
  49: ((oo)(oo))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fullantiQ[n_]:=Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={};
    Select[Range[100],fullantiQ]

A358456 Number of recursively bi-anti-transitive ordered rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 7, 17, 47, 117, 321, 895, 2556, 7331, 21435, 63116, 187530
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2022

Keywords

Comments

We define an unlabeled ordered rooted tree to be recursively bi-anti-transitive if there are no two branches of the same node such that one is a branch of the other.

Examples

			The a(1) = 1 through a(6) = 17 trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (((o)))  (((o))o)   (((o))oo)
                          (((oo)))   (((oo))o)
                          ((o)(o))   (((ooo)))
                          (o((o)))   ((o)(oo))
                          ((((o))))  ((oo)(o))
                                     (o((o))o)
                                     (o((oo)))
                                     (oo((o)))
                                     ((((o)))o)
                                     ((((o))o))
                                     ((((oo))))
                                     (((o)(o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

The unordered version is A324765, ranked by A324766.
The directed version is A358455.
A000108 counts ordered rooted trees, unordered A000081.
A306844 counts anti-transitive rooted trees.
A358453 counts transitive ordered trees, unordered A290689.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],FreeQ[#,{_,x_,_,{_,x_,_},_}|{_,{_,x_,_},_,x_,_}]&]],{n,10}]

A358455 Number of recursively anti-transitive ordered rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 72, 206, 608, 1830, 5612, 17442, 54866, 174252, 558072, 1800098
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2022

Keywords

Comments

We define an unlabeled ordered rooted tree to be recursively anti-transitive if no branch of a branch of a subtree is a branch of the same subtree farther to the left.

Examples

			The a(1) = 1 through a(5) = 10 trees:
  o  (o)  (oo)   (ooo)    (oooo)
          ((o))  ((o)o)   ((o)oo)
                 ((oo))   ((oo)o)
                 (((o)))  ((ooo))
                          (((o))o)
                          (((o)o))
                          (((oo)))
                          ((o)(o))
                          (o((o)))
                          ((((o))))
		

Crossrefs

The unordered version is A324765, ranked by A324766.
The undirected version is A358456.
A000108 counts ordered rooted trees, unordered A000081.
A306844 counts anti-transitive rooted trees.
A358453 counts transitive ordered trees, unordered A290689.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],FreeQ[#,{_,x_,_,{_,x_,_},_}]&]],{n,10}]

A324841 Matula-Goebel numbers of fully recursively anti-transitive rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 21, 23, 25, 27, 31, 32, 35, 49, 51, 53, 57, 59, 63, 64, 67, 73, 77, 81, 83, 85, 95, 97, 103, 115, 121, 125, 127, 128, 131, 133, 147, 149, 153, 159, 161, 171, 175, 177, 187, 189, 201, 209, 217, 227, 233, 241, 243, 245
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully recursively anti-transitive if no proper terminal subtree of any terminal subtree is a branch of the larger subtree.

Examples

			The sequence of fully recursively anti-transitive rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  21: ((o)(oo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  31: (((((o)))))
  32: (ooooo)
  35: (((o))(oo))
  49: ((oo)(oo))
  51: ((o)((oo)))
  53: ((oooo))
  57: ((o)(ooo))
  59: ((((oo))))
  63: ((o)(o)(oo))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fratQ[n_]:=And[Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={},And@@fratQ/@primeMS[n]];
    Select[Range[100],fratQ]

A358457 Numbers k such that the k-th standard ordered rooted tree is transitive (counted by A358453).

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 15, 16, 25, 27, 28, 30, 31, 32, 50, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 99, 100, 105, 106, 107, 108, 109, 110, 111, 112, 114, 117, 118, 119, 120, 121, 123, 124, 126, 127, 128, 198, 199, 200, 210, 211, 212, 213, 214, 215, 216, 217, 218
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2022

Keywords

Comments

We define an unlabeled ordered rooted tree to be transitive if every branch of a branch of the root already appears farther to the left as a branch of the root.
We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The terms together with their corresponding ordered trees begin:
   1: o
   2: (o)
   4: (oo)
   7: (o(o))
   8: (ooo)
  14: (o(o)o)
  15: (oo(o))
  16: (oooo)
  25: (o(oo))
  27: (o(o)(o))
  28: (o(o)oo)
  30: (oo(o)o)
  31: (ooo(o))
  32: (ooooo)
  50: (o(oo)o)
  53: (o(o)((o)))
  54: (o(o)(o)o)
  55: (o(o)o(o))
		

Crossrefs

The unordered version is A290822, counted by A290689.
These trees are counted by A358453.
The undirected version is A358458, counted by A358454.
A000108 counts ordered rooted trees, unordered A000081.
A306844 counts anti-transitive rooted trees.
A324766 ranks recursively anti-transitive rooted trees, counted by A324765.
A358455 counts recursively anti-transitive ordered rooted trees.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[100],Composition[Function[t,And@@Table[Complement[t[[k]],Take[t,k]]=={},{k,Length[t]}]],srt]]

A317964 Prime numbers in the lexicographically earliest sequence of positive integers whose prime indices are not already in the sequence (A304360).

Original entry on oeis.org

2, 5, 13, 17, 23, 31, 37, 43, 47, 61, 67, 73, 79, 89, 103, 107, 109, 113, 137, 149, 151, 163, 167, 179, 181, 193, 197, 223, 227, 233, 241, 251, 257, 263, 269, 271, 277, 281, 307, 317, 347, 349, 353, 359, 379, 383, 389, 397, 419, 421, 431, 433, 449, 457, 463, 467, 487, 499, 503, 509, 521, 523, 547
Offset: 1

Views

Author

N. J. A. Sloane, Aug 26 2018

Keywords

Comments

Also primes whose prime index is not in A304360, or is in A324696. A prime index of n is a number m such that prime(m) divides n. - Gus Wiseman, Mar 19 2019

Crossrefs

Programs

  • Maple
    count:= 0:
    P:= {}: A:= NULL:
    for n from 2 while count < 100 do
      pn:= numtheory:-factorset(n);
      if pn intersect P = {} then
        P:= P union {ithprime(n)};
        if isprime(n) then A:= A, n; count:= count+1 fi;
      fi
    od:
    A; # Robert Israel, Aug 26 2018
  • Mathematica
    aQ[n_]:=n==1||Or@@Cases[FactorInteger[n],{p_,_}:>!aQ[PrimePi[p]]];
    Prime[Select[Range[100],aQ]] (* Gus Wiseman, Mar 19 2019 *)

A358458 Numbers k such that the k-th standard ordered rooted tree is weakly transitive (counted by A358454).

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 12, 14, 15, 16, 18, 22, 23, 24, 25, 27, 28, 30, 31, 32, 36, 38, 39, 42, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 70, 71, 72, 76, 78, 79, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 99, 100, 102, 103, 105
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2022

Keywords

Comments

We define an unlabeled ordered rooted tree to be weakly transitive if every branch of a branch of the root is itself a branch of the root.
We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The terms together with their corresponding ordered trees begin:
   1: o
   2: (o)
   4: (oo)
   6: ((o)o)
   7: (o(o))
   8: (ooo)
  12: ((o)oo)
  14: (o(o)o)
  15: (oo(o))
  16: (oooo)
  18: ((oo)o)
  22: ((o)(o)o)
  23: ((o)o(o))
  24: ((o)ooo)
		

Crossrefs

The unordered version is A290822, counted by A290689.
These trees are counted by A358454.
The directed version is A358457, counted by A358453.
A000108 counts ordered rooted trees, unordered A000081.
A306844 counts anti-transitive rooted trees.
A324766 ranks recursively anti-transitive rooted trees, counted by A324765.
A358455 counts recursively anti-transitive ordered rooted trees.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[100],Complement[Union@@srt[#],srt[#]]=={}&]
Showing 1-9 of 9 results.