A324820 Xor-Moebius transform of A324815.
0, 0, 0, 4, 0, 2, 0, 12, 12, 0, 0, 2, 0, 2, 16, 16, 0, 4, 0, 0, 36, 0, 0, 0, 24, 0, 20, 6, 0, 50, 0, 56, 4, 0, 40, 44, 0, 2, 128, 0, 0, 38, 0, 0, 56, 0, 0, 8, 48, 10, 4, 0, 0, 4, 72, 4, 512, 2, 0, 34, 0, 0, 36, 72, 8, 6, 0, 4, 4, 40, 0, 100, 0, 0, 40, 6, 80, 130, 0, 8, 16, 0, 0, 22, 256, 0, 2048, 8, 0, 90, 128, 4
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552)
- Index entries for sequences related to binary expansion of n
- Index entries for sequences computed from indices in prime factorization
- Index entries for sequences related to sigma(n)
Programs
-
PARI
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 by David A. Corneth A324815(n) = bitand(2*A156552(n),A323243(n)); \\ Needs code also from A323243. A324820(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A324815(d)))); (v); };
Formula
a(p) = 0 for all primes p.