A324849 Positive integers divisible by none of their prime indices > 1.
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 3: {2} 4: {1,1} 5: {3} 7: {4} 8: {1,1,1} 9: {2,2} 10: {1,3} 11: {5} 13: {6} 14: {1,4} 16: {1,1,1,1} 17: {7} 19: {8} 20: {1,1,3} 21: {2,4} 22: {1,5} 23: {9} 25: {3,3}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) andmap(t -> not ((n/numtheory:-pi(t))::integer), numtheory:-factorset(n) minus {2}) end proc: select(filter, [$1..200]); # Robert Israel, Mar 20 2019
-
Mathematica
Select[Range[100],!Or@@Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>If[p==2,False,Divisible[#,PrimePi[p]]]]&]
-
PARI
is(n) = my(f=factor(n)[, 1]~, idc=[]); for(k=1, #f, idc=concat(idc, [primepi(f[k])])); for(t=1, #idc, if(idc[t]==1, next); if(n%idc[t]==0, return(0))); 1 \\ Felix Fröhlich, Mar 21 2019
Comments