A324851 Numbers > 1 divisible by the sum of their prime indices.
2, 4, 6, 12, 15, 16, 20, 30, 35, 36, 42, 48, 56, 88, 99, 112, 120, 126, 130, 135, 143, 144, 160, 162, 180, 192, 210, 216, 220, 221, 228, 231, 242, 250, 256, 270, 275, 280, 288, 297, 300, 308, 322, 330, 338, 360, 396, 400, 408, 429, 435, 440, 455, 468, 480, 493
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 2: {1} 4: {1,1} 6: {1,2} 12: {1,1,2} 15: {2,3} 16: {1,1,1,1} 20: {1,1,3} 30: {1,2,3} 35: {3,4} 36: {1,1,2,2} 42: {1,2,4} 48: {1,1,1,1,2} 56: {1,1,1,4} 88: {1,1,1,5} 99: {2,2,5} 112: {1,1,1,1,4} 120: {1,1,1,2,3} 126: {1,2,2,4} 130: {1,3,6} 135: {2,2,2,3}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) local t; n mod add(numtheory:-pi(t[1])*t[2],t=ifactors(n)[2]) = 0 end proc: select(filter, [$1..1000]); # Robert Israel, Mar 19 2019
-
Mathematica
Select[Range[2,100],Divisible[#,Plus@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]*k]]&]
-
PARI
isok(n) = {my(f = factor(n)); (n!=1) && !(n % sum(k=1, #f~, primepi(f[k,1])*f[k,2]));} \\ Michel Marcus, Mar 19 2019
Comments