cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324852 Number of distinct prime indices of n that divide n.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 1, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			60060 has 7 prime indices {1,1,2,3,4,5,6}, all of which divide 60060, and 6 of which are distinct, so a(60060) = 6.
		

Crossrefs

The version for all prime indices (counted with multiplicity) is A324848.
Positions of zeros are A324846.
Positions of ones are A323440.

Programs

  • Maple
    a:= n-> add(`if`(irem(n, numtheory[pi](i[1]))=0, 1, 0), i=ifactors(n)[2]):
    seq(a(n), n=1..120);  # Alois P. Heinz, Mar 19 2019
  • Mathematica
    Table[Count[If[n==1,{},FactorInteger[n]],{p_,_}/;Divisible[n,PrimePi[p]]],{n,100}]
  • PARI
    a(n) = {my(f = factor(n)[,1]); sum(k=1, #f, !(n % primepi(f[k])));} \\ Michel Marcus, Mar 19 2019

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/(k*prime(k)) = 0.848969... (A124012). - Amiram Eldar, Jan 11 2025