A324857 Numbers m > 1 such that there exists a prime divisor p of m with s_p(m) = p.
6, 10, 12, 15, 18, 20, 21, 24, 33, 34, 36, 39, 40, 45, 48, 57, 63, 65, 66, 68, 72, 80, 85, 87, 91, 93, 96, 99, 105, 111, 117, 130, 132, 133, 135, 136, 144, 145, 160, 165, 171, 175, 185, 189, 192, 205, 217, 225, 231, 249, 255, 258, 259, 260, 261, 264, 265, 272, 273, 279, 285, 288, 297, 301, 305, 320, 325, 327, 333, 341, 351, 384, 385
Offset: 1
Examples
s_p(m) = 1 < p for m = 2, 3, 4, 5 with prime p dividing m, but if m = 6 and p = 2 then s_p(m) = s_2(2 + 2^2) = 1 + 1 = 2 = p, so a(1) = 6.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), Article #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
Programs
-
Maple
S:= (p,m) -> convert(convert(m,base,p),`+`): filter:= proc(m) ormap(p -> S(p,m) = p, numtheory:-factorset(m)) end proc: select(filter, [$2..500]); # Robert Israel, Mar 20 2019
-
Mathematica
s[n_, b_] := If[n < 1 || b < 2, 0, Plus @@ IntegerDigits[n, b]]; f[n_] := AnyTrue[Divisors[n], PrimeQ[#] && s[n, #] == # &]; Select[Range[400], f[#] &]n (* simplified by Bernd C. Kellner, Apr 02 2019 *)
-
PARI
isok(n) = {if (n>1, my(vp=factor(n)[,1]); for (k=1, #vp, if (sumdigits(n, vp[k]) == vp[k], return (1)))); } \\ Michel Marcus, Mar 19 2019
Comments