A324858 Numbers m > 1 such that there exists a composite divisor c of m with s_c(m) = c.
28, 40, 52, 66, 76, 88, 96, 100, 112, 120, 126, 136, 148, 153, 156, 160, 176, 186, 190, 196, 208, 225, 232, 246, 268, 276, 280, 288, 292, 297, 304, 306, 328, 336, 340, 344, 352, 366, 369, 370, 378, 388, 396, 400, 408, 435, 441, 448, 456, 460, 486, 496, 513, 516, 520, 532, 540, 544, 546, 550, 560, 568, 576, 580, 585, 592
Offset: 1
Examples
s_4(28) = 4 as 28 = 3 * 4 + 1 * 4^2, so 28 is a member.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), Article #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
Programs
-
Maple
S:= proc(c,m) convert(convert(m,base,c),`+`) end proc: filter:= proc(m) ormap(c -> (S(c,m)=c), remove(isprime,numtheory:-divisors(m) minus {1})) end proc: select(filter, [$1..1000]); # Robert Israel, Mar 19 2019
-
Mathematica
s[n_, b_] := If[n < 1 || b < 2, 0, Plus @@ IntegerDigits[n, b]]; f[n_] := AnyTrue[Divisors[n], CompositeQ[#] && s[n, #] == # &]; Select[Range[600], f[#] &] (* simplified by Bernd C. Kellner, Apr 02 2019 *)
-
PARI
isok(n) = {fordiv(n, d, if ((d>1) && !isprime(d) && (sumdigits(n, d) == d), return (1)););} \\ Michel Marcus, Mar 19 2019
Comments