A324863 Binary length of A324866(n), where A324866(n) = A156552(n) OR (A323243(n) - A156552(n)).
0, 1, 2, 2, 3, 3, 4, 3, 3, 4, 5, 4, 6, 5, 4, 4, 7, 4, 8, 5, 5, 6, 9, 5, 5, 7, 4, 6, 10, 5, 11, 5, 6, 8, 5, 5, 12, 9, 7, 6, 13, 6, 14, 7, 5, 10, 15, 6, 6, 5, 8, 8, 16, 5, 6, 7, 9, 11, 17, 6, 18, 12, 6, 6, 7, 7, 19, 9, 10, 6, 20, 6, 21, 13, 5, 10, 6, 8, 22, 7, 6, 14, 23, 7, 8, 15, 11, 8, 24, 6, 7, 11, 12, 16, 9, 7, 25, 6, 7, 6, 26, 9, 27, 9, 6
Offset: 1
Keywords
Examples
For n = 50, we have A156552(50) = 25 and A323243(50) = 31. Taking bitwise-OR (A003986) of 25 and 31-25 = 6, we get 31, in binary "11111", with length 5, thus a(50) = 5. The rest of examples pertain to the conjectured interpretation of this sequence: Divisors of 8 are [1, 2, 4, 8]. A324861 applied to these gives values [0, 1, 2, 3], of which the largest is 3, thus a(8) = 3. Divisors of 25 are [1, 5, 25]. A324861 applied to these gives values [0, 3, 5], of which the largest is 5, thus a(25) = 5. Divisors of 50 are [1, 2, 5, 10, 25, 50]. A324861 applied to these gives values [0, 1, 3, 4, 5, 4], of which the largest is 5, thus a(50) = 5. Divisors of 88 are [1, 2, 4, 8, 11, 22, 44, 88]. A324861 applied to these gives values [0, 1, 2, 3, 5, 6, 7, 8], of which the largest is 8, thus a(88) = 8. Divisors of 3675 are [1, 3, 5, 7, 15, 21, 25, 35, 49, 75, 105, 147, 175, 245, 525, 735, 1225, 3675]. A324861 applied to these gives values [0, 2, 3, 4, 4, 5, 5, 5, 6, 4, 6, 5, 6, 5, 8, 7, 8, 8], of which the largest is 8 (occurs three times), thus a(3675) = 8. Divisors of 7623 are [1, 3, 7, 9, 11, 21, 33, 63, 77, 99, 121, 231, 363, 693, 847, 1089, 2541, 7623]. A324861 applied to these gives values [0, 2, 4, 3, 5, 5, 6, 6, 6, 7, 7, 7, 6, 8, 6, 9, 9, 9], of which the largest is 9 (occurs three times), thus a(7623) = 9.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552)
- Index entries for sequences related to binary expansion of n
- Index entries for sequences computed from indices in prime factorization
- Index entries for sequences related to sigma(n)
Crossrefs
Programs
-
PARI
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 by David A. Corneth A324866(n) = { my(k=A156552(n)); bitor(k,(A323243(n)-k)); }; \\ Needs also code from A323243. A324863(n) = #binary(A324866(n));
-
PARI
A324876(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A324866(d)))); (v); }; A324861(n) = #binary(A324876(n)); A324863(n) = { my(m=0,w,c=0); fordiv(n,d,w=A324861(d); if(w>=m,if(w==m,c++,c=1;m=w))); (m); };
Comments