cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A324893 a(n) = sigma(A097706(n)), where A097706(n) is the part of n composed of prime factors of form 4k+3.

Original entry on oeis.org

1, 1, 4, 1, 1, 4, 8, 1, 13, 1, 12, 4, 1, 8, 4, 1, 1, 13, 20, 1, 32, 12, 24, 4, 1, 1, 40, 8, 1, 4, 32, 1, 48, 1, 8, 13, 1, 20, 4, 1, 1, 32, 44, 12, 13, 24, 48, 4, 57, 1, 4, 1, 1, 40, 12, 8, 80, 1, 60, 4, 1, 32, 104, 1, 1, 48, 68, 1, 96, 8, 72, 13, 1, 1, 4, 20, 96, 4, 80, 1, 121, 1, 84, 32, 1, 44, 4, 12, 1, 13, 8, 24, 128, 48, 20, 4, 1, 57, 156, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Mar 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[1, Times @@ Power @@@ Select[FactorInteger[#], Mod[#[[1]], 4] == 3 &]] &, 102] (* Michael De Vlieger, Mar 30 2019 *)
  • PARI
    A324893(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4<3, 1, ((f[i,1]^(1+f[i,2]))-1)/(f[i,1]-1))); };
    
  • PARI
    A097706(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4<3, 1, f[i, 1])^f[i, 2]); };
    A324893(n) = sigma(A097706(n));

Formula

Multiplicative with a(p^e) = (p^(e+1) - 1)/(p-1) if p == 3 (mod 4), otherwise a(p^e) = 1.
a(n) = A000203(A097706(n)).
a(n) = A000593(n) / A324891(n).
Showing 1-1 of 1 results.