cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A324912 Binary weight of A324911(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2019

Keywords

Comments

After 1 differs from A051903 at n = 900, 1764, 1800, 2700, 3528, 4356, 4500, 4900, 5292, ..., which seems to be a subsequence of A318720.

Examples

			For n = 900 = 2^2 * 3^2 * 5^2, A324911(900) = A156552(4) * A156552(9) * A156552(25) = 3*6*12 = 216, which in base-2 is written as "11011000", thus a(900) = 4.
		

Crossrefs

Differs from A072411 for the first time at n=72, where a(72) = 3, while A072411(72) = 6.

Programs

  • PARI
    A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; \\ From A156552
    A324911(n) = { my(f=factor(n)); prod(i=1, #f~, A156552(f[i,1]^f[i,2])); };
    A324912(n) = hammingweight(A324911(n));

Formula

a(n) = A000120(A324911(n)).

A324910 Multiplicative with a(p^e) = (2^e)-1.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 7, 3, 1, 1, 3, 1, 1, 1, 15, 1, 3, 1, 3, 1, 1, 1, 7, 3, 1, 7, 3, 1, 1, 1, 31, 1, 1, 1, 9, 1, 1, 1, 7, 1, 1, 1, 3, 3, 1, 1, 15, 3, 3, 1, 3, 1, 7, 1, 7, 1, 1, 1, 3, 1, 1, 3, 63, 1, 1, 1, 3, 1, 1, 1, 21, 1, 1, 3, 3, 1, 1, 1, 15, 15, 1, 1, 3, 1, 1, 1, 7, 1, 3, 1, 3, 1, 1, 1, 31, 1, 3, 3, 9, 1, 1, 1, 7, 1
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Times @@ (2^(FactorInteger[#][[All, -1]]) - 1) &, 105] (* Michael De Vlieger, Apr 14 2019 *)
  • PARI
    A324910(n) = factorback(apply(e -> -1+(2^e), factor(n)[,2]~));

Formula

Multiplicative with a(p^e) = A000225(e).
Multiplicative with a(p^e) = A322993(p^e).
a(n) = A246674(A156552(n)).
Showing 1-2 of 2 results.