cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A324911 Multiplicative with a(p^e) = A156552(p^e).

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 8, 7, 6, 4, 16, 6, 32, 8, 8, 15, 64, 6, 128, 12, 16, 16, 256, 14, 12, 32, 14, 24, 512, 8, 1024, 31, 32, 64, 32, 18, 2048, 128, 64, 28, 4096, 16, 8192, 48, 24, 256, 16384, 30, 24, 12, 128, 96, 32768, 14, 64, 56, 256, 512, 65536, 24, 131072, 1024, 48, 63, 128, 32, 262144, 192, 512, 32, 524288, 42, 1048576, 2048, 24, 384
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2019

Keywords

Examples

			For n = 900 = 2^2 * 3^2 * 5^2, a(900) = A156552(4) * A156552(9) * A156552(25) = 3*6*12 = 216.
		

Crossrefs

Cf. also A324106.

Programs

  • PARI
    A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; \\ From A156552
    A324911(n) = { my(f=factor(n)); prod(i=1, #f~, A156552(f[i,1]^f[i,2])); };

A328892 If n = Product (p_j^k_j) then a(n) = Sum (2^(k_j - 1)).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 3, 1, 2, 2, 8, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 4, 3, 1, 3, 1, 16, 2, 2, 2, 4, 1, 2, 2, 5, 1, 3, 1, 3, 3, 2, 1, 9, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 4, 1, 2, 3, 32, 2, 3, 1, 3, 2, 3, 1, 6, 1, 2, 3, 3, 2, 3, 1, 9, 8, 2, 1, 4, 2, 2, 2, 5, 1, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 29 2019

Keywords

Examples

			a(72) = 6 because 72 = 2^3 * 3^2 and 2^(3 - 1) + 2^(2 - 1) = 6.
		

Crossrefs

Cf. A000040 (positions of 1's), A008481, A011782, A162510, A324910.

Programs

  • Maple
    a:= n-> add(2^(i[2]-1), i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 29 2019
  • Mathematica
    a[1] = 0; a[n_] := Plus @@ (2^(#[[2]] - 1) & /@ FactorInteger[n]); Table[a[n], {n, 1, 90}]
  • PARI
    a(n)={vecsum([2^(k-1) | k<-factor(n)[,2]])} \\ Andrew Howroyd, Oct 29 2019

Formula

If n = Product (p_j^k_j) then a(n) = Sum ordered partition(k_j).
Additive with a(p^e) = 2^(e-1).
Showing 1-2 of 2 results.