cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324925 Number of integer partitions y of n such that Product_{i in y} prime(i)/i is an integer.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 5, 5, 8, 9, 11, 17, 19, 21, 28, 32, 40, 51, 57, 67, 83, 96, 118, 142, 160, 189, 224, 260, 307, 363, 412, 479, 561, 649, 749, 874, 997, 1141, 1321, 1518, 1734, 1994, 2274, 2582, 2960, 3374, 3837, 4370, 4950, 5604, 6371, 7208, 8157, 9231, 10392
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2019

Keywords

Comments

The Heinz numbers of these integer partitions are given by A324850.

Examples

			The a(1) = 1 through a(8) = 5 integer partitions:
  (1)  (11)  (21)   (211)   (2111)   (321)     (3211)     (32111)
             (111)  (1111)  (11111)  (411)     (4111)     (41111)
                                     (2211)    (22111)    (221111)
                                     (21111)   (211111)   (2111111)
                                     (111111)  (1111111)  (11111111)
For example, (3,2,1,1) is such a partition because (2/1) * (2/1) * (3/2) * (5/3) = 10 is an integer.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Product[Prime[i]/i,{i,#}]]&]],{n,0,30}]