cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A196050 Number of edges in the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 5, 5, 5, 6, 5, 6, 5, 5, 6, 5, 5, 6, 5, 6, 6, 5, 5, 6, 6, 5, 6, 5, 6, 7, 6, 6, 6, 6, 7, 6, 6, 5, 7, 7, 6, 6, 6, 5, 7, 6, 6, 7, 6, 7, 7, 5, 6, 7, 7, 6, 7, 6, 6, 8, 6, 7, 7, 6, 7, 8, 6, 6, 7, 7, 6, 7, 7, 6, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 6, 7, 7, 7, 8, 6, 6, 8, 6, 8
Offset: 1

Views

Author

Emeric Deutsch, Sep 27 2011

Keywords

Comments

The Matula-Goebel number of a rooted tree is defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
a(n) is, for n >= 2, the number of prime function prime(.) = A000040(.) operations in the complete reduction of n. See the W. Lang link with a list of the reductions for n = 2..100, where a curly bracket notation {.} is used for prime(.). - Wolfdieter Lang, Apr 03 2018
From Gus Wiseman, Mar 23 2019: (Start)
Every positive integer has a unique factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
In this factorization, a(n) is the number of factors counted with multiplicity. For example, a(11) = 4, a(50) = 7, a(360) = 10.
(End)
From Antti Karttunen, Oct 23 2023: (Start)
Totally additive with a(prime(n)) = 1 + a(n).
Number of iterations of A366385 (or equally, of A366387) needed to reach 1.
(End)

Examples

			a(7) = 3 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y.
a(2^m) = m because the rooted tree with Matula-Goebel number 2^m is the star tree with m edges.
		

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a196050 n = genericIndex a196050_list (n - 1)
    a196050_list = 0 : g 2 where
       g x = y : g (x + 1) where
         y = if t > 0 then a196050 t + 1 else a196050 r + a196050 s
             where t = a049084 x; r = a020639 x; s = x `div` r
    -- Reinhard Zumkeller, Sep 03 2013
    
  • Maple
    with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 then 1+a(pi(n)) else a(r(n))+a(s(n)) end if end proc: seq(a(n), n = 1 .. 110);
  • Mathematica
    a[1] = 0; a[n_?PrimeQ] := a[n] = 1 + a[PrimePi[n]]; a[n_] := Total[#[[2]] * a[#[[1]] ]& /@ FactorInteger[n]];
    Array[a, 110] (* Jean-François Alcover, Nov 16 2017 *)
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[Length[difac[n]],{n,100}] (* Gus Wiseman, Mar 23 2019 *)
  • PARI
    a(n) = my(f=factor(n)); [self()(primepi(p))+1 |p<-f[,1]]*f[,2]; \\ Kevin Ryde, May 28 2021
    
  • Python
    from functools import lru_cache
    from sympy import isprime, primepi, factorint
    @lru_cache(maxsize=None)
    def A196050(n):
        if n == 1 : return 0
        if isprime(n): return 1+A196050(primepi(n))
        return sum(e*A196050(p) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 19 2022

Formula

a(1)=0; if n = prime(t) (the t-th prime), then a(n)=1 + a(t); if n = r*s (r,s>=2), then a(n)=a(r)+a(s). The Maple program is based on this recursive formula.
a(n) = A061775(n) - 1.
a(n) = A109129(n) + A366388(n) = A109082(n) + A358729(n). - Antti Karttunen, Oct 23 2023

A324850 Numbers divisible by the product of their prime indices.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 28, 30, 32, 36, 48, 56, 60, 64, 72, 96, 112, 120, 128, 144, 152, 156, 168, 180, 192, 216, 224, 240, 256, 288, 304, 312, 330, 336, 360, 384, 432, 448, 476, 480, 512, 576, 608, 624, 660, 672, 720, 768, 784, 828, 840, 848, 864, 888, 896
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with product A003963(n). For example, the prime indices of 30 are {1,2,3}, with product 6, which divides 30, so 30 is in the sequence.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
  12: {1,1,2}
  16: {1,1,1,1}
  24: {1,1,1,2}
  28: {1,1,4}
  30: {1,2,3}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  48: {1,1,1,1,2}
  56: {1,1,1,4}
  60: {1,1,2,3}
  64: {1,1,1,1,1,1}
  72: {1,1,1,2,2}
  96: {1,1,1,1,1,2}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Divisible[#,Times@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]^k]]&]
  • PARI
    isok(n) = my(f=factor(n)); !(n % prod(k=1, #f~, primepi(f[k,1])^f[k,2])); \\ Michel Marcus, Mar 22 2019

Formula

n/A003963(n) = A324933(n)/A324934(n).

A324923 Number of distinct factors in the factorization of n into factors q(i) = prime(i)/i, i > 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 2, 1, 2, 3, 4, 2, 3, 2, 3, 1, 3, 2, 2, 3, 3, 4, 3, 2, 3, 3, 2, 2, 4, 3, 5, 1, 4, 3, 4, 2, 3, 2, 3, 3, 4, 3, 3, 4, 3, 3, 4, 2, 2, 3, 4, 3, 2, 2, 4, 2, 3, 4, 4, 3, 3, 5, 3, 1, 4, 4, 3, 3, 3, 4, 4, 2, 4, 3, 3, 2, 5, 3, 5, 3, 2, 4, 4, 3, 5, 3, 4, 4, 3, 3, 4, 3, 5, 4, 4, 2, 4, 2, 4, 3, 4, 4, 3, 3, 4, 2, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2019

Keywords

Comments

Also the number of distinct proper terminal subtrees of the rooted tree with Matula-Goebel number n. See illustrations in A061773.

Examples

			The factorization 22 = q(1)^2 q(2) q(3) q(5) has four distinct factors, so a(22) = 4.
		

Crossrefs

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[Length[Union[difac[n]]],{n,100}]
  • PARI
    A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]);
    A324923(n) = { my(lista = List([]), gpf, i); while(n > 1, gpf=A006530(n); i = primepi(gpf); n /= gpf; n *= i; listput(lista,i)); #Set(lista); }; \\ Antti Karttunen, Oct 23 2023

Formula

a(n) = A317713(n) - 1.
a(n) = A196050(n) - A366386(n). - Antti Karttunen, Oct 23 2023

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 23 2023

A324924 Irregular triangle read by rows giving the factorization of n into factors q(i) = prime(i)/i, i > 0.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 1, 2, 3, 5, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 4, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 4, 7, 1, 1, 1, 2, 2, 1, 1, 1, 8, 1, 1, 1, 2, 3, 1, 1, 1, 2, 4, 1, 1, 2, 3, 5, 1, 1, 2, 2, 9
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2019

Keywords

Comments

Row n is the multiset of Matula-Goebel numbers of all proper terminal subtrees of the rooted tree with Matula-Goebel number n. For example, the rooted tree with Matula-Goebel number 1362 is (o(o)((oo)(oo))), with proper terminal subtrees {o,o,o,o,o,o,(o),(oo),(oo),((oo)(oo))}, which have Matula-Goebel numbers {1,1,1,1,1,1,2,4,4,49}, which is row 1362, as required.

Examples

			Triangle begins:
  {}
  1
  1  2
  1  1
  1  2  3
  1  1  2
  1  1  4
  1  1  1
  1  1  2  2
  1  1  2  3
  1  2  3  5
  1  1  1  2
  1  1  2  6
  1  1  1  4
  1  1  2  2  3
  1  1  1  1
  1  1  4  7
  1  1  1  2  2
  1  1  1  8
  1  1  1  2  3
  1  1  1  2  4
  1  1  2  3  5
  1  1  2  2  9
For example, row 65 is {1,1,1,2,2,3,6} because 65 = q(1)^3 q(2)^2 q(3) q(6).
		

Crossrefs

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[difac[n],{n,30}]

A330950 Number of integer partitions of n whose Heinz number (product of primes of parts) is divisible by n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 7, 7, 11, 11, 22, 15, 30, 42, 77, 42, 101, 56, 176, 176, 231, 135, 490, 490, 490, 792, 1002, 490, 1575, 627, 3010, 2436, 2436, 3718, 5604, 1958, 4565, 6842, 12310, 3718, 14883, 4565, 21637, 26015, 17977, 8349, 53174, 44583, 63261
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2020

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The a(1) = 1 through a(10) = 11 partitions:
  1  11  21  211   32   321    43    5111      522      631
             1111  311  2211   421   32111     3222     3331
                        21111  4111  41111     4221     4321
                                     221111    22221    5311
                                     311111    32211    32221
                                     2111111   222111   33211
                                     11111111  2211111  43111
                                                        322111
                                                        331111
                                                        3211111
                                                        31111111
For example, the Heinz number of (3,2) is 15, which is divisible by 5, so (3,2) is counted under a(5).
		

Crossrefs

The Heinz numbers of these partitions are given by A324851.
Partitions whose product is divisible by their sum are A057568.
Partitions whose Heinz number is divisible by all parts are A330952.
Partitions whose Heinz number is divisible by their product are A324925.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Times@@Prime/@#,n]&]],{n,20}]

A324922 a(n) = unique m such that m/A003963(m) = n, where A003963 is product of prime indices.

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 28, 8, 36, 60, 330, 24, 156, 56, 180, 16, 476, 72, 152, 120, 168, 660, 828, 48, 900, 312, 216, 112, 1740, 360, 10230, 32, 1980, 952, 840, 144, 888, 304, 936, 240, 6396, 336, 2408, 1320, 1080, 1656, 8460, 96, 784, 1800, 2856, 624, 848, 432
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2019

Keywords

Comments

Every positive integer has a unique factorization into factors q(i) = prime(i)/i, i > 0 given by the rows of A324924. Then a(n) is the number obtained by encoding this factorization as a standard factorization into prime numbers (A112798).

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    difac[n_]:=If[n==1,{},With[{m=Product[Prime[i]/i,{i,primeMS[n]}]},Sort[Join[primeMS[n],difac[n/m]]]]];
    Table[Times@@Prime/@difac[n],{n,30}]
  • PARI
    a(n) = my (f=factor(n)); prod (i=1, #f~, (f[i,1] * a(primepi(f[i,1])))^f[i,2]) \\ Rémy Sigrist, Jul 18 2019

Formula

a(n) = Product_t mg(t) where the product is over all (not necessarily distinct) terminal subtrees of the rooted tree with Matula-Goebel number n, and mg(t) is the Matula-Goebel number of t.
Completely multiplicative with a(prime(n)) = prime(n) * a(n). - Rémy Sigrist, Jul 18 2019

Extensions

Keyword mult added by Rémy Sigrist, Jul 18 2019

A330953 Number of integer partitions of n whose Heinz number (product of primes of parts) is divisible by their sum of primes of parts.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 3, 4, 6, 3, 12, 10, 12, 14, 27, 38, 44, 52, 48, 77, 101, 106, 127, 206, 268, 377, 392, 496, 602, 671, 821, 1090, 1318, 1568, 1926, 2260, 2703, 3258, 3942, 4858, 5923, 6891, 8286, 9728, 11676, 13775, 16314, 19749, 23474, 27793, 32989, 38775
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2020

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The a(1) = 1 through a(11) = 12 partitions: (A = 10, B = 11):
  1  2   3  4     5  6    7      8         9        A         B
     11     1111     222  3211   431       432      5311      542
                     321  22111  4211      3321     22111111  5411
                                 11111111  32211              33221
                                           321111             42221
                                           2211111            53111
                                                              322211
                                                              431111
                                                              521111
                                                              2222111
                                                              3311111
                                                              32111111
For example, the partition (3,3,2,2,1) is counted under a(11) because 5*5*3*3*2 = 450 is divisible by 5+5+3+3+2 = 18.
		

Crossrefs

The Heinz numbers of these partitions are given by A036844.
Numbers divisible by the sum of their prime indices are A324851.
Partitions whose product is divisible by their sum are A057568.
Partitions whose Heinz number is divisible by all parts are A330952.
Partitions whose Heinz number is divisible by their product are A324925.
Partitions whose Heinz number is divisible by their sum are A330950.
Partitions whose product is divisible by their sum of primes are A330954.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Times@@Prime/@#,Plus@@Prime/@#]&]],{n,30}]

A324931 Integers in the list of quotients of positive integers by their product of prime indices.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 12, 7, 5, 32, 9, 24, 14, 10, 64, 18, 48, 28, 20, 128, 36, 19, 13, 21, 15, 96, 27, 56, 40, 256, 72, 38, 26, 11, 42, 30, 192, 54, 112, 17, 80, 512, 144, 76, 52, 22, 84, 60, 384, 49, 23, 35, 53, 108, 37, 224, 25, 57, 39, 34, 160, 63, 1024
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

These quotients are given by A324932(n)/A324933(n).
This is a permutation of the positive integers, with inverse A324934.

Examples

			The sequence of quotients n/A003963(n) begins: 1, 2, 3/2, 4, 5/3, 3, 7/4, 8, 9/4, 10/3, 11/5, 6, 13/6, 7/2, 5/2, 16, ...
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n/Times@@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]^k],{n,100}],IntegerQ]

Formula

a(n) = A324850(n)/A003963(A324850(n)).

A324934 Inverse permutation to A324931.

Original entry on oeis.org

1, 2, 4, 3, 10, 6, 9, 5, 12, 15, 35, 8, 24, 14, 26, 7, 41, 17, 23, 20, 25, 47, 52, 13, 58, 34, 28, 19, 79, 37, 184, 11, 87, 61, 53, 22, 56, 33, 60, 30, 145, 36, 92, 70, 65, 75, 164, 18, 51, 82, 98, 46, 54, 39, 178, 29, 59, 106, 293, 49, 122, 245, 63, 16, 125
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Crossrefs

A340606 Numbers whose prime indices (A112798) are all divisors of the number of prime factors (A001222).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 16, 20, 24, 32, 36, 50, 54, 56, 64, 81, 84, 96, 125, 126, 128, 144, 160, 176, 189, 196, 216, 240, 256, 294, 324, 360, 384, 400, 416, 441, 486, 512, 540, 576, 600, 624, 686, 729, 810, 864, 896, 900, 936, 968, 1000, 1024, 1029, 1040, 1088, 1215
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
   9: {2,2}
  16: {1,1,1,1}
  20: {1,1,3}
  24: {1,1,1,2}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  50: {1,3,3}
  54: {1,2,2,2}
  56: {1,1,1,4}
  64: {1,1,1,1,1,1}
  81: {2,2,2,2}
  84: {1,1,2,4}
  96: {1,1,1,1,1,2}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The reciprocal version is A143773 (A316428).
These partitions are counted by A340693.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A003963 multiplies together the prime indices of n.
A018818 counts partitions of n into divisors of n (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions of n whose length divides n (A316413).
A056239 adds up the prime indices of n.
A061395 selects the maximum prime index.
A067538 counts partitions of n whose maximum divides n (A326836).
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
A168659 = partitions whose length is divisible by their maximum (A340609).
A168659 = partitions whose maximum is divisible by their length (A340610).
A289509 lists numbers with relatively prime prime indices.
A326842 = partitions of n whose length and parts all divide n (A326847).
A326843 = partitions of n whose length and maximum both divide n (A326837).
A340852 have a factorization with factors dividing length.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@IntegerQ/@(PrimeOmega[#]/primeMS[#])&]
Showing 1-10 of 15 results. Next