A000607 Number of partitions of n into prime parts.
1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 30, 35, 40, 46, 52, 60, 67, 77, 87, 98, 111, 124, 140, 157, 175, 197, 219, 244, 272, 302, 336, 372, 413, 456, 504, 557, 614, 677, 744, 819, 899, 987, 1083, 1186, 1298, 1420, 1552, 1695, 1850, 2018, 2198, 2394, 2605, 2833, 3079, 3344
Offset: 0
Examples
n = 10 has a(10) = 5 partitions into prime parts: 10 = 2 + 2 + 2 + 2 + 2 = 2 + 2 + 3 + 3 = 2 + 3 + 5 = 3 + 7 = 5 + 5. n = 15 has a(15) = 12 partitions into prime parts: 15 = 2 + 2 + 2 + 2 + 2 + 2 + 3 = 2 + 2 + 2 + 3 + 3 + 3 = 2 + 2 + 2 + 2 + 2 + 5 = 2 + 2 + 2 + 2 + 7 = 2 + 2 + 3 + 3 + 5 = 2 + 3 + 5 + 5 = 2 + 3 + 3 + 7 = 2 + 2 + 11 = 2 + 13 = 3 + 3 + 3 + 3 + 3 = 3 + 5 + 7 = 5 + 5 + 5.
References
- R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; see p. 203.
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
- B. C. Berndt and B. M. Wilson, Chapter 5 of Ramanujan's second notebook, pp. 49-78 of Analytic Number Theory (Philadelphia, 1980), Lect. Notes Math. 899, 1981, see Entry 29.
- D. M. Burton, Elementary Number Theory, 5th ed., McGraw-Hill, 2002.
- L. M. Chawla and S. A. Shad, On a trio-set of partition functions and their tables, J. Natural Sciences and Mathematics, 9 (1969), 87-96.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Hans Havermann, Table of n, a(n) for n = 0..50000 (first 1000 terms from T. D. Noe, terms 1001-20000 from Vaclav Kotesovec, terms 20001-50000 extracted from files by Hans Havermann)
- K. Alladi and P. Erdős, On an additive arithmetic function, Pacific J. Math., Volume 71, Number 2 (1977), 275-294.
- George E. Andrews, Arnold Knopfmacher, and John Knopfmacher, Engel expansions and the Rogers-Ramanujan identities, J. Number Theory 80 (2000), 273-290. See Eq. 2.1.
- George E. Andrews, Arnold Knopfmacher, and Burkhard Zimmermann, On the Number of Distinct Multinomial Coefficients, Journal of Number Theory, Volume 118, Issue 1, May 2006, pp. 15-30.
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Johann Bartel, R. K. Bhaduri, Matthias Brack, and M. V. N. Murthy, Asymptotic prime partitions of integers, Phys. Rev. E, 95 (2017), 052108, arXiv:1609.06497 [math-ph], 2016-2017.
- P. T. Bateman and P. Erdős, Partitions into primes, Publ. Math. Debrecen 4 (1956), 198-200.
- J. Browkin, Sur les décompositions des nombres naturels en sommes de nombres premiers, Colloquium Mathematicum 5 (1958), 205-207.
- Edward A. Bender, Asymptotic methods in enumeration, SIAM Review 16 (1974), no. 4, p. 509.
- L. M. Chawla and S. A. Shad, Review of "On a trio-set of partition functions and their tables", Mathematics of Computation, Vol. 24, No. 110 (Apr., 1970), pp. 490-491.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see Section VIII.6, pp. 576ff.
- H. Gupta, Partitions into distinct primes, Proc. Nat. Acad. Sci. India, 21 (1955), 185-187.
- O. P. Gupta and S. Luthra, Partitions into primes, Proc. Nat. Inst. Sci. India. Part A. 21 (1955), 181-184.
- R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12. (annotated scanned copy)
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- H. Havermann, Tables of sum-of-prime-factors sequences (including sequence lengths, i.e., number of prime-parts partitions, for the first 50000).
- BongJu Kim, Partition number identities which are true for all set of parts, arXiv:1803.08095 [math.CO], 2018.
- Vaclav Kotesovec, Graph - asymptotic ratio for log(a(n)), without minor asymptotic term.
- Vaclav Kotesovec, Wrong asymptotics of OEIS A000607? (MathOverflow). Includes discussion of the contradiction between the results for the next-to-leading term in the asymptotic formulas by Vaughan and by Bartel et al.
- John F. Loase (splurge(AT)aol.com), David Lansing, Cassie Hryczaniuk and Jamie Cahoon, A Variant of the Partition Function, College Mathematics Journal, Vol. 36, No. 4 (Sep 2005), pp. 320-321.
- Ljuben Mutafchiev, A Note on Goldbach Partitions of Large Even Integers, arXiv:1407.4688 [math.NT], 2014-2015.
- Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
- N. J. A. Sloane, Transforms.
- R. C. Vaughan, On the number of partitions into primes, Ramanujan J. vol. 15, no. 1 (2008) 109-121.
- Eric Weisstein's World of Mathematics, Prime Partition.
- Roger Woodford, Bounds for the Eventual Positivity of Difference Functions of Partitions, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.3.
- Index entries for sequences related to Goldbach conjecture
Crossrefs
Cf. A046676, A048165, A004526, A051034, A000040, A001414, A000586 (distinct parts), A000041, A070214, A192541, A112021, A056768, A128515, A319265, A319266.
Column sums of A331416.
Partitions whose Heinz number is divisible by their sum of primes are A330953.
Partitions of whose sum of primes is divisible by their sum are A331379.
Programs
-
Haskell
a000607 = p a000040_list where p _ 0 = 1 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Aug 05 2012
-
Magma
[1] cat [#RestrictedPartitions(n,{p:p in PrimesUpTo(n)}): n in [1..100]]; // Marius A. Burtea, Jan 02 2019
-
Maple
with(gfun): t1:=mul(1/(1-q^ithprime(n)),n=1..51): t2:=series(t1,q,50): t3:=seriestolist(t2); # fixed by Vaclav Kotesovec, Sep 14 2014
-
Mathematica
CoefficientList[ Series[1/Product[1 - x^Prime[i], {i, 1, 50}], {x, 0, 50}], x] f[n_] := Length@ IntegerPartitions[n, All, Prime@ Range@ PrimePi@ n]; Array[f, 57] (* Robert G. Wilson v, Jul 23 2010 *) Table[Length[Select[IntegerPartitions[n],And@@PrimeQ/@#&]],{n,0,60}] (* Harvey P. Dale, Apr 22 2012 *) a[n_] := a[n] = If[PrimeQ[n], 1, 0]; c[n_] := c[n] = Plus @@ Map[# a[#] &, Divisors[n]]; b[n_] := b[n] = (c[n] + Sum[c[k] b[n - k], {k, 1, n - 1}])/n; Table[b[n], {n, 1, 20}] (* Thomas Vogler, Dec 10 2015: Uses Euler transform, caches computed values, faster than IntegerPartitions[] function. *) nmax = 100; pmax = PrimePi[nmax]; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; poly[[3]] = -1; Do[p = Prime[k]; Do[poly[[j + 1]] -= poly[[j + 1 - p]], {j, nmax, p, -1}];, {k, 2, pmax}]; s = Sum[poly[[k + 1]]*x^k, {k, 0, Length[poly] - 1}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 11 2021 *)
-
PARI
N=66;x='x+O('x^N); Vec(1/prod(k=1,N,1-x^prime(k))) \\ Joerg Arndt, Sep 04 2014
-
Python
from sympy import primefactors l = [1, 0] for n in range(2, 101): l.append(sum(sum(primefactors(k)) * l[n - k] for k in range(1, n + 1)) // n) l # Indranil Ghosh, Jul 13 2017
-
Sage
[Partitions(n, parts_in=prime_range(n + 1)).cardinality() for n in range(100)] # Giuseppe Coppoletta, Jul 11 2016
Formula
Asymptotically a(n) ~ exp(2 Pi sqrt(n/log n) / sqrt(3)) (Ayoub).
a(n) = (1/n)*Sum_{k=1..n} A008472(k)*a(n-k). - Vladeta Jovovic, Aug 27 2002
G.f.: 1/Product_{k>=1} (1-x^prime(k)).
From Vaclav Kotesovec, Sep 15 2014 [Corrected by Andrey Zabolotskiy, May 26 2017]: (Start)
It is surprising that the ratio of the formula for log(a(n)) to the approximation 2 * Pi * sqrt(n/(3*log(n))) exceeds 1. For n=20000 the ratio is 1.00953, and for n=50000 (using the value from Havermann's tables) the ratio is 1.02458, so the ratio is increasing. See graph above.
A more refined asymptotic formula is found by Vaughan in Ramanujan J. 15 (2008), pp. 109-121, and corrected by Bartel et al. (2017): log(a(n)) = 2*Pi*sqrt(n/(3*log(n))) * (1 - log(log(n))/(2*log(n)) + O(1/log(n))).
See Bartel, Bhaduri, Brack, Murthy (2017) for a more complete asymptotic expansion. (End)
G.f.: 1 + Sum_{i>=1} x^prime(i) / Product_{j=1..i} (1 - x^prime(j)). - Ilya Gutkovskiy, May 07 2017
Comments