A324976 Rank of the n-th primary Carmichael number.
12, 8, 18, 12, 52, 52, 20, 32, 16, 54, 8, 36, 124, 34, 12, 72, 96, 26, 28, 76, 98, 1804, 108, 124, 18, 72, 172, 120, 10, 104, 32, 244, 130, 376, 18, 92, 780, 36, 172, 92, 284, 24, 198, 12, 244, 64, 234, 340, 100, 284, 24, 124, 44, 518, 364, 16, 82, 148, 8, 206
Offset: 1
Examples
If m = A324316(1) = 1729 = 7*13*19, then p = 19, so a(1) = 2+2*((1729/19)-1)/(19-1) = 12.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
- Wikipedia, Polygonal number
Crossrefs
Programs
-
Mathematica
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]]; LP[n_] := Transpose[FactorInteger[n]][[1]]; TestCP[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] == # &]; T = Select[Range[1, 10^7, 2], TestCP[#] &]; GPF[n_] := Last[Select[Divisors[n], PrimeQ]]; Table[2 + 2*(T[[i]]/GPF[T[[i]]] - 1)/(GPF[T[[i]]] - 1), {i, Length[T]}]
Formula
Extensions
More terms from Amiram Eldar, Mar 27 2019
Comments