cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324983 a(n) = denominator of Sum_{d|n} (pod(d)/tau(d)) where pod(k) = the product of the divisors of k (A007955) and tau(k) = the number of the divisors of k (A000005).

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 6, 2, 2, 4, 15, 2, 2, 2, 2, 4, 2, 2, 6, 6, 2, 4, 6, 2, 4, 2, 5, 4, 2, 4, 6, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 30, 6, 2, 4, 6, 2, 4, 4, 6, 4, 2, 2, 4, 2, 2, 4, 35, 4, 4, 2, 2, 4, 4, 2, 6, 2, 2, 12, 6, 4, 4, 2, 10, 20, 2, 2, 12, 4
Offset: 1

Views

Author

Jaroslav Krizek, Mar 22 2019

Keywords

Comments

Sum_{d|n} (pod(d)/tau(d)) > 1 for all n > 1.

Examples

			Sum_{d|n} (pod(d)/tau(d)) for n >= 1: 1, 2, 5/2, 14/3, 7/2, 25/2, 9/2, 62/3, 23/2, 59/2, ...
For n=4; Sum_{d|4} (pod(d)/tau(d)) = pod(1)/tau(1) + pod(2)/tau(2) + pod(4)/tau(4) = 1/1 + 2/2 + 8/3 = 14/3;  a(4) = 3.
		

Crossrefs

Cf. A000203, A007955, A324982 (numerators).

Programs

  • Magma
    [Denominator(&+[&*[c: c in Divisors(d)] / NumberOfDivisors(d): d in Divisors(n)]): n in [1..100]]
    
  • Mathematica
    Array[Denominator@ DivisorSum[#, Apply[Times, Divisors@ #]/DivisorSigma[0, #] &] &, 85] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    a(n) = denominator(sumdiv(n, d, vecprod(divisors(d))/numdiv(d))); \\ Michel Marcus, Mar 23 2019

Formula

a(p) = 2 for p = odd primes.