cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324993 Decimal expansion of zeta'(-1, 1/3).

Original entry on oeis.org

0, 9, 3, 7, 2, 6, 2, 0, 1, 7, 6, 0, 7, 7, 9, 4, 2, 7, 4, 8, 4, 2, 0, 0, 8, 9, 9, 1, 3, 3, 1, 9, 2, 8, 6, 7, 3, 6, 8, 8, 3, 7, 2, 8, 6, 9, 3, 8, 7, 3, 8, 0, 2, 1, 5, 2, 5, 4, 4, 8, 0, 9, 2, 5, 4, 5, 4, 3, 4, 9, 9, 7, 9, 5, 0, 9, 2, 3, 3, 5, 1, 1, 7, 1, 6, 7, 2, 7, 4, 9, 4, 7, 5, 5, 4, 0, 7, 6, 0, 4, 0, 2, 9, 8, 5, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2019

Keywords

Examples

			0.093726201760779427484200899133192867368837286938738021525448092545434...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(1,-1,1/3), 120);
    evalf(-Pi/(18*sqrt(3)) - log(3)/72 + Psi(1, 1/3) / (12*sqrt(3)*Pi) - Zeta(1, -1)/3, 120);
  • Mathematica
    RealDigits[Derivative[1, 0][Zeta][-1, 1/3], 10, 120][[1]]
    N[With[{k=1}, -Sqrt[3] * (9^k - 1) * BernoulliB[2*k] * Pi / (9^k * 8*k) - 3*BernoulliB[2*k] * Log[3] / 9^k / 4 / k - (-1)^k * PolyGamma[2*k-1, 1/3] / 2 / Sqrt[3] / (6*Pi)^(2*k-1) - (9^k-3)*Zeta'[-2*k+1]/2/9^k], 120]
  • PARI
    zetahurwitz'(-1, 1/3) \\ Michel Marcus, Mar 24 2019

Formula

Equals -Pi/(18*sqrt(3)) - log(3)/72 + PolyGamma(1, 1/3) / (12*sqrt(3)*Pi) - Zeta'(-1)/3.
A324993 + A324994 = -log(3)/36 - 2*Zeta'(-1)/3.