cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324999 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 4, 1, 9, 4, 1, 16, 11, 5, 1, 25, 24, 15, 6, 1, 36, 45, 36, 21, 7, 1, 49, 76, 75, 56, 28, 8, 1, 64, 119, 141, 127, 84, 36, 9, 1, 81, 176, 245, 258, 210, 120, 45, 10, 1, 100, 249, 400, 483, 463, 330, 165, 55, 11, 1, 121, 340, 621, 848, 931, 792, 495, 220, 66, 12, 1
Offset: 1

Views

Author

Robert A. Russell, Mar 23 2019

Keywords

Comments

For n=1, the figure is a line segment with two vertices. For n=2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with four triangular faces. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Each of its n+1 facets is a regular (n-1)-dimensional simplex. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.

Examples

			The array begins with A(1,1):
  1  4  9  16  25   36   49    64    81   100   121    144    169    196 ...
  1  4 11  24  45   76  119   176   249   340   451    584    741    924 ...
  1  5 15  36  75  141  245   400   621   925  1331   1860   2535   3381 ...
  1  6 21  56 127  258  483   848  1413  2254  3465   5160   7475  10570 ...
  1  7 28  84 210  463  931  1744  3087  5215  8470  13300  20280  30135 ...
  1  8 36 120 330  792 1717  3440  6471 11560 19778  32616  52104  80952 ...
  1  9 45 165 495 1287 3003  6436 12879 24355 43923  76077 127257 206493 ...
  1 10 55 220 715 2002 5005 11440 24311 48630 92433 168180 294645 499422 ...
  ...
For A(1,2) = 4, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses two colors. For A(2,2)=4, the triangle may have 0, 1, 2, or 3 edges of one color.
		

Crossrefs

Cf. A325000 (unoriented), A325000(n,k-n) (chiral), A325001 (achiral), A325002 (exactly k colors), A327083 (edges, ridges), A337883 (faces, peaks), A325004 (orthotope facets, orthoplex vertices), A325012 (orthoplex facets, orthotope vertices).
Rows 1-4 are A000290, A006527, A006008, A337895.

Programs

  • Mathematica
    Table[Binomial[d+1,n+1] + Binomial[d+1-n,n+1], {d,1,15}, {n,1,d}] // Flatten

Formula

A(n,k) = binomial(n+k,n+1) + binomial(k,n+1).
A(n,k) = Sum_{j=1..n+1} A325002(n,j) * binomial(k,j).
A(n,k) = A325000(n,k) + A325000(n,k-n) = 2*A325000(n,k) - A325001(n,k) = 2*A325000(n,k-n) + A325001(n,k).
G.f. for row n: (x + x^(n+1)) / (1-x)^(n+2).
Linear recurrence for row n: A(n,k) = Sum_{j=1..n+2} -binomial(j-n-3,j) * A(n,k-j).
G.f. for column k: (1 - 2*(1-x)^k + (1-x^2)^k) / (x*(1-x)^k) - 2*k.