A324999 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors.
1, 4, 1, 9, 4, 1, 16, 11, 5, 1, 25, 24, 15, 6, 1, 36, 45, 36, 21, 7, 1, 49, 76, 75, 56, 28, 8, 1, 64, 119, 141, 127, 84, 36, 9, 1, 81, 176, 245, 258, 210, 120, 45, 10, 1, 100, 249, 400, 483, 463, 330, 165, 55, 11, 1, 121, 340, 621, 848, 931, 792, 495, 220, 66, 12, 1
Offset: 1
Examples
The array begins with A(1,1): 1 4 9 16 25 36 49 64 81 100 121 144 169 196 ... 1 4 11 24 45 76 119 176 249 340 451 584 741 924 ... 1 5 15 36 75 141 245 400 621 925 1331 1860 2535 3381 ... 1 6 21 56 127 258 483 848 1413 2254 3465 5160 7475 10570 ... 1 7 28 84 210 463 931 1744 3087 5215 8470 13300 20280 30135 ... 1 8 36 120 330 792 1717 3440 6471 11560 19778 32616 52104 80952 ... 1 9 45 165 495 1287 3003 6436 12879 24355 43923 76077 127257 206493 ... 1 10 55 220 715 2002 5005 11440 24311 48630 92433 168180 294645 499422 ... ... For A(1,2) = 4, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses two colors. For A(2,2)=4, the triangle may have 0, 1, 2, or 3 edges of one color.
Links
- Robert A. Russell, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
Table[Binomial[d+1,n+1] + Binomial[d+1-n,n+1], {d,1,15}, {n,1,d}] // Flatten
Formula
A(n,k) = binomial(n+k,n+1) + binomial(k,n+1).
A(n,k) = Sum_{j=1..n+1} A325002(n,j) * binomial(k,j).
A(n,k) = A325000(n,k) + A325000(n,k-n) = 2*A325000(n,k) - A325001(n,k) = 2*A325000(n,k-n) + A325001(n,k).
G.f. for row n: (x + x^(n+1)) / (1-x)^(n+2).
Linear recurrence for row n: A(n,k) = Sum_{j=1..n+2} -binomial(j-n-3,j) * A(n,k-j).
G.f. for column k: (1 - 2*(1-x)^k + (1-x^2)^k) / (x*(1-x)^k) - 2*k.
Comments