cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A006527 a(n) = (n^3 + 2*n)/3.

Original entry on oeis.org

0, 1, 4, 11, 24, 45, 76, 119, 176, 249, 340, 451, 584, 741, 924, 1135, 1376, 1649, 1956, 2299, 2680, 3101, 3564, 4071, 4624, 5225, 5876, 6579, 7336, 8149, 9020, 9951, 10944, 12001, 13124, 14315, 15576, 16909, 18316, 19799, 21360, 23001, 24724, 26531, 28424, 30405
Offset: 0

Views

Author

Keywords

Comments

Number of ways to color vertices (or edges) of a triangle using <= n colors, allowing only rotations.
Also: dot_product (1,2,...,n)*(2,3,...,n,1), n >= 0. - Clark Kimberling
Start from triacid and attach amino acids according to the reaction scheme that describes the reaction between the active sites. See the hyperlink below on chemistry. - Robert G. Wilson v, Aug 02 2002
Starting with offset 1 = row sums of triangle A158822 and binomial transform of (1, 3, 4, 2, 0, 0, 0, ...). - Gary W. Adamson, Mar 28 2009
One-ninth of sum of three consecutive cubes: a(n) = ((n-1)^3 + n^3 + (n+1)^3)/9. - Zak Seidov, Jul 22 2013
For n > 2, number of different cubes, formed after splitting a cube in color C_1, by parallel planes in the colors C_2, C_3, ..., C_n in three spatial dimensions (in the order of the colors from a fixed vertex). Generally, in a large hypercube n^d is f(n,d) = C(n+d-1, d) + C(n, d) different small hypercubes. See below for my formula a(n) = f(n,3). - Thomas Ordowski, Jun 15 2014
a(n) is a square for n = 1, 2 & 24; and for no other values up to 10^7 (see M. Gardner). - Michel Marcus, Sep 06 2015
Number of unit tetrahedra contained in an n-scale tetrahedron composed of a tetrahedral-octahedral honeycomb. - Jason Pruski, Aug 23 2017

References

  • M. Gardner, New Mathematical Diversions from Scientific American. Simon and Schuster, NY, 1966, p. 246.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Column 1 of triangle A094414. Row 6 of the array in A107735.
Cf. A000292 (unoriented), A000292(n-2) (chiral), A000290 (achiral) triangle colorings.
Row 2 of A324999 (simplex vertices and facets) and A327083 (simplex edges and ridges).

Programs

  • Haskell
    a006527 n = n * (n ^ 2 + 2) `div` 3  -- Reinhard Zumkeller, Jan 06 2014
  • Magma
    [(n^3 + 2*n)/3: n in [0..50]]; // Vincenzo Librandi, May 15 2011
    
  • Maple
    A006527:=z*(1+z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
    with(combinat):seq(lcm(fibonacci(4,n),fibonacci(2,n))/3,n=0..42); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[ (n^3 + 2*n)/3, {n, 0, 45} ]
    LinearRecurrence[{4,-6,4,-1},{0,1,4,11},46] (* or *) CoefficientList[ Series[(x+x^3)/(x-1)^4,{x,0,49}],x] (* Harvey P. Dale, Jun 13 2011 *)
  • PARI
    a(n)=n*(n^2+2)/3 \\ Charles R Greathouse IV, Jul 25 2011
    

Formula

a(0)=0, a(1)=1, a(2)=4, a(3)=11; for n > 3, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jun 13 2011
From Paul Barry, Mar 13 2003: (Start)
a(n) = 2*binomial(n+1, 3) + binomial(n, 1).
G.f.: x*(1+x^2)/(1-x)^4. (End)
a(n) = A000292(n) + A000292(n-2). - Alexander Adamchuk, May 20 2006
a(n) = n*A059100(n)/3. - Lekraj Beedassy, Feb 06 2007
a(n) = A054602(n)/3. - Zerinvary Lajos, Apr 20 2008
a(n) = ( n + Sum_{i=1..n} A177342(i) )/(n+1), with n > 0. - Bruno Berselli, May 19 2010
a(n) = A002264(A000578(n) + A005843(n)). - Reinhard Zumkeller, Jun 16 2011
a(n) = binomial(n+2, 3) + binomial(n, 3). - Thomas Ordowski, Jun 15 2014
a(n) = A000292(n) - A000292(-n). - Bruno Berselli, Sep 22 2016
E.g.f.: (x/3)*(3 + 3*x + x^2)*exp(x). - G. C. Greubel, Sep 01 2017
From Robert A. Russell, Oct 20 2020: (Start)
a(n) = 1*C(n,1) + 2*C(n,2) + 2*C(n,3), where the coefficient of C(n,k) is the number of oriented triangle colorings using exactly k colors.
a(n) = 2*A000292(n) - A000290(n) = 2*A000292(n-2) + A000290(n). (End)
Sum_{n>0} 1/a(n) = 3*(2*gamma + polygamma(0, 1-i*sqrt(2)) + polygamma(0, 1+i*sqrt(2)))/4 = 1.45245201414472469745354677573358867... where i denotes the imaginary unit. - Stefano Spezia, Aug 31 2023

Extensions

More terms from Alexander Adamchuk, May 20 2006
Corrected and replaced 5th formula from Harvey P. Dale, Jun 13 2011
Deleted an erroneous comment. - N. J. A. Sloane, Dec 10 2018

A006008 Number of inequivalent ways to color vertices of a regular tetrahedron using <= n colors.

Original entry on oeis.org

0, 1, 5, 15, 36, 75, 141, 245, 400, 621, 925, 1331, 1860, 2535, 3381, 4425, 5696, 7225, 9045, 11191, 13700, 16611, 19965, 23805, 28176, 33125, 38701, 44955, 51940, 59711, 68325, 77841, 88320, 99825, 112421, 126175, 141156, 157435, 175085, 194181, 214800, 237021, 260925, 286595, 314116, 343575
Offset: 0

Views

Author

N. J. A. Sloane, Clint. C. Williams (Clintwill(AT)aol.com)

Keywords

Comments

Here "inequivalent" refers to the rotation group of the tetrahedron, of order 12, with cycle index (x1^4 + 8*x1*x3 + 3*x2^2)/12, which is also the alternating group A_4.
Equivalently, number of distinct tetrahedra that can be obtained by painting its faces using at most n colors. - Lekraj Beedassy, Dec 29 2007
Equals row sums of triangle A144680. - Gary W. Adamson, Sep 19 2008

References

  • J.-P. Delahaye, 'Le miraculeux "lemme de Burnside"', 'Le coloriage du tetraedre' pp 147 in 'Pour la Science' (French edition of 'Scientific American') No.350 December 2006 Paris.
  • Martin Gardner, New Mathematical Diversions from Scientific American. Simon and Schuster, NY, 1966, p. 246.
  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A144680. - Gary W. Adamson, Sep 19 2008
Cf. A000332(n+3) (unoriented), A000332 (chiral), A006003 (achiral).
Row 3 of A324999.

Programs

  • Magma
    [(n^4 + 11*n^2 )/12: n in [0..40]]; // Vincenzo Librandi, Aug 12 2011
    
  • Maple
    A006008 := n->1/12*n^2*(n^2+11);
    A006008:=-z*(z+1)*(z**2-z+1)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[(n^4+11n^2)/12,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,5,15,36},40] (* Harvey P. Dale, Aug 11 2011 *)
  • PARI
    apply( {A006008(n)=(n^4+11*n^2)/12}, [0..50]) \\ M. F. Hasler, Jan 26 2020

Formula

a(n) = (n^4 + 11*n^2)/12. (Replace all x_i's in the cycle index with n.)
Binomial transform of [1, 4, 6, 5, 2, 0, 0, 0, ...]. - Gary W. Adamson, Apr 23 2008
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with a(0)=0, a(1)=1, a(2)=5, a(3)=15, a(4)=36. - Harvey P. Dale, Aug 11 2011
a(n) = C(n,1) + 3C(n,2) + 3C(n,3) + 2C(n,4). Each term indicates the number of tetrahedra with exactly 1, 2, 3, or 4 colors. - Robert A. Russell, Dec 03 2014
a(n) = binomial(n+3,4) + binomial(n,4). - Collin Berman, Jan 26 2016
a(n) = A000332(n+3) + A000332(n) = 2*A000332(n+3) - A006003(n) = 2*A000332(n) + A006003(n).
a(n) = A324999(3,n).
E.g.f.: (1/12)*exp(x)*x*(12 + 18*x + 6*x^2 + x^3). - Stefano Spezia, Jan 26 2020
Sum_{n>=1} 1/a(n) = (6 + 22*Pi^2 - 6*sqrt(11)*Pi*coth(sqrt(11)*Pi))/121. - Amiram Eldar, Aug 23 2022

A325000 Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 3, 1, 6, 4, 1, 10, 10, 5, 1, 15, 20, 15, 6, 1, 21, 35, 35, 21, 7, 1, 28, 56, 70, 56, 28, 8, 1, 36, 84, 126, 126, 84, 36, 9, 1, 45, 120, 210, 252, 210, 120, 45, 10, 1, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
Offset: 1

Views

Author

Robert A. Russell, Mar 23 2019

Keywords

Comments

For n=1, the figure is a line segment with two vertices. For n=2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with four triangular faces. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Each of its n+1 facets is a regular (n-1)-dimensional simplex. Two unoriented colorings are the same if congruent; chiral pairs are counted as one.
Note that antidiagonals are part of rows of the Pascal triangle.
T(n,k-n) is the number of chiral pairs of colorings of the facets (or vertices) of a regular n-dimensional simplex using k or fewer colors. - Robert A. Russell, Sep 28 2020

Examples

			The array begins with T(1,1):
  1  3  6  10  15   21   28    36    45    55    66     78     91    105 ...
  1  4 10  20  35   56   84   120   165   220   286    364    455    560 ...
  1  5 15  35  70  126  210   330   495   715  1001   1365   1820   2380 ...
  1  6 21  56 126  252  462   792  1287  2002  3003   4368   6188   8568 ...
  1  7 28  84 210  462  924  1716  3003  5005  8008  12376  18564  27132 ...
  1  8 36 120 330  792 1716  3432  6435 11440 19448  31824  50388  77520 ...
  1  9 45 165 495 1287 3003  6435 12870 24310 43758  75582 125970 203490 ...
  1 10 55 220 715 2002 5005 11440 24310 48620 92378 167960 293930 497420 ...
  ...
For T(1,2) = 3, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses two colors. For T(2,2)=4, the triangle may have 0, 1, 2, or 3 edges of one color.
		

Crossrefs

Cf. A324999 (oriented), A325001 (achiral).
Unoriented: A007318(n,k-1) (exactly k colors), A327084 (edges, ridges), A337884 (faces, peaks), A325005 (orthotope facets, orthoplex vertices), A325013 (orthoplex facets, orthotope vertices).
Chiral: A327085 (edges, ridges), A337885 (faces, peaks), A325006 (orthotope facets, orthoplex vertices), A325014 (orthoplex facets, orthotope vertices).
Cf. A104712 (same sequence for a triangle; same sequence apart from offset).
Rows 1-4 are A000217, A000292, A000332(n+3), A000389(n+4). - Robert A. Russell, Sep 28 2020

Programs

  • Mathematica
    Table[Binomial[d+1,n+1], {d,1,15}, {n,1,d}] // Flatten

Formula

T(n,k) = binomial(n+k,n+1) = A007318(n+k,n+1).
T(n,k) = Sum_{j=1..n+1} A007318(n,j-1) * binomial(k,j).
T(n,k) = A324999(n,k) + T(n,k-n) = (A324999(n,k) - A325001(n,k)) / 2 = T(n,k-n) + A325001(n,k). - Robert A. Russell, Sep 28 2020
G.f. for row n: x / (1-x)^(n+2).
Linear recurrence for row n: T(n,k) = Sum_{j=1..n+2} -binomial(j-n-3,j) * T(n,k-j).
G.f. for column k: (1 - (1-x)^k) / (x * (1-x)^k) - k.
T(n,k-n) = A324999(n,k) - T(n,k) = (A324999(n,k) - A325001(n,k)) / 2 = T(n,k) - A325001(n,k). - Robert A. Russell, Oct 10 2020

A325012 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the facets of a regular n-dimensional orthoplex using up to k colors.

Original entry on oeis.org

1, 4, 1, 9, 6, 1, 16, 24, 23, 1, 25, 70, 333, 496, 1, 36, 165, 2916, 230076, 2275974, 1, 49, 336, 16725, 22456756, 965227578201, 800648638402240, 1, 64, 616, 70911, 795467350, 9607713956430560, 149031415906337877339236058, 1054942853799126580390222487977120, 1
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.
Also the number of oriented colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.

Examples

			Array begins with A(1,1):
1   4      9       16        25          36           49            64 ...
1   6     24       70       165         336          616          1044 ...
1  23    333     2916     16725       70911       241913        701968 ...
1 496 230076 22456756 795467350 14697611496 173107727191 1466088119056 ...
For A(1,2) = 4, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses one color for each vertex.
		

Crossrefs

Cf. A325013 (unoriented), A325014 (chiral), A325015 (achiral), A325016 (exactly k colors).
Other n-dimensional polytopes: A324999 (simplex), A325004 (orthotope).
Rows 1-3 are A000290, A006528, A000543; column 2 is A237748.

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&,n,EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n,MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1);(* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i,1]]==s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[(CI0[#] pc[#]) & /@ IntegerPartitions[n]])/(n! 2^(n - 1))] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k
    Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = A325013(n,k) + A325014(n,k) = 2*A325013(n,k) - A325015(n,k) = 2*A325014(n,k) + A325015(n,k).
A(n,k) = Sum_{j=1..2^n} A325016(n,j) * binomial(k,j).

A327083 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the edges of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 11, 12, 1, 5, 24, 87, 40, 1, 6, 45, 416, 1197, 184, 1, 7, 76, 1475, 18592, 42660, 1296, 1, 8, 119, 4236, 166885, 3017600, 4223313, 17072, 1, 9, 176, 10437, 1019880, 85025050, 1748176768, 1139277096, 424992
Offset: 1

Views

Author

Robert A. Russell, Aug 19 2019

Keywords

Comments

An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n-2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.
A(n,k) is also the number of oriented colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using up to k colors. Thus, A(2,k) is also the number of oriented colorings of the vertices (0-dimensional simplices) of an equilateral triangle.

Examples

			Array begins with A(1,1):
  1  2    3     4      5       6       7        8        9        10 ...
  1  4   11    24     45      76     119      176      249       340 ...
  1 12   87   416   1475    4236   10437    22912    45981     85900 ...
  1 40 1197 18592 166885 1019880 4738153 17962624 58248153 166920040 ...
  ...
For A(2,3) = 11, the nine achiral colorings are AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, and CCC. The chiral pair is ABC-ACB.
		

Crossrefs

Cf. A327084 (unoriented), A327085 (chiral), A327086 (achiral), A327087 (exactly k colors), A324999 (vertices, facets), A337883 (faces, peaks), A337407 (orthotope edges, orthoplex ridges), A337411 (orthoplex edges, orthotope ridges).
Rows 1-4 are A000027, A006527, A046023, A331350.
Column 2 is A218144(n+1).

Programs

  • Mathematica
    CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *)
    CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}]
    compress[x : {{, } ...}] := (s = Sort[x]; For[i=Length[s], i>1, i-=1, If[s[[i,1]] == s[[i-1,1]], s[[i-1,2]]+=s[[i,2]]; s=Delete[s,i], Null]]; s)
    CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p,-1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p,-1]]]
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#,2]]], pc[#] j^Total[CycleX[#]][[2]], 0] & /@ IntegerPartitions[n+1]]/((n+1)!/2)]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d-n+1], {d,1,10}, {n,1,d}] // Flatten
    (* Using Fripertinger's exponent per Andrew Howroyd's code in A063841: *)
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))]
    ex[v_] := Sum[GCD[v[[i]], v[[j]]], {i,2,Length[v]}, {j,i-1}] + Total[Quotient[v,2]]
    array[n_,k_] := Total[If[EvenQ[Total[1-Mod[#,2]]], pc[#]k^ex[#], 0] &/@ IntegerPartitions[n+1]]/((n+1)!/2)
    Table[array[n,d-n+1], {d,10}, {n,d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = Sum_{j=1..(n+1)*n/2} A327087(n,j) * binomial(k,j).
A(n,k) = A327084(n,k) + A327085(n,k) = 2*A327084(n,k) - A327086(n,k) = 2*A327085(n,k) + A327086(n,k).

A325001 Array read by descending antidiagonals: A(n,k) is the number of achiral colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 5, 1, 5, 16, 15, 6, 1, 6, 25, 34, 21, 7, 1, 7, 36, 65, 56, 28, 8, 1, 8, 49, 111, 125, 84, 36, 9, 1, 9, 64, 175, 246, 210, 120, 45, 10, 1, 10, 81, 260, 441, 461, 330, 165, 55, 11, 1, 11, 100, 369, 736, 917, 792, 495, 220, 66, 12, 1
Offset: 1

Views

Author

Robert A. Russell, Mar 23 2019

Keywords

Comments

For n=1, the figure is a line segment with two vertices. For n=2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with four triangular faces. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Each of its n+1 facets is a regular (n-1)-dimensional simplex. An achiral coloring is the same as its reflection.

Examples

			The array begins with A(1,1):
  1  2  3   4   5    6    7     8     9    10    11     12     13 ...
  1  4  9  16  25   36   49    64    81   100   121    144    169 ...
  1  5 15  34  65  111  175   260   369   505   671    870   1105 ...
  1  6 21  56 125  246  441   736  1161  1750  2541   3576   4901 ...
  1  7 28  84 210  461  917  1688  2919  4795  7546  11452  16848 ...
  1  8 36 120 330  792 1715  3424  6399 11320 19118  31032  48672 ...
  1  9 45 165 495 1287 3003  6434 12861 24265 43593  75087 124683 ...
  1 10 55 220 715 2002 5005 11440 24309 48610 92323 167740 293215 ...
  ...
For A(2,2)=4, the triangle may have 0, 1, 2, or 3 edges of one color.
		

Crossrefs

Cf. A324999 (oriented), A325000 (unoriented), A325000(n,k-n) (chiral), A325003 (exactly k colors), A327086 (edges, ridges), A337886 (faces, peaks), A325007 (orthotope facets, orthoplex vertices), A325015 (orthoplex facets, orthotope vertices).
Rows 1-4 are A000027, A000290, A006003, A132366(n-1).
Column 2 is A162880.

Programs

  • Mathematica
    Table[Binomial[d+1,n+1] - Binomial[d+1-n,n+1], {d,1,15}, {n,1,d}] // Flatten

Formula

A(n,k) = binomial(n+k,n+1) - binomial(k,n+1).
A(n,k) = Sum_{j=1..n} A325003(n,j) * binomial(k,j).
A(n,k) = 2*A325000(n,k) - A324999(n,k) = A324999(n,k) - 2*A325000(n,k-n) = A325000(n,k) - A325000(n,k-n).
G.f. for row n: (x - x^(n+1)) / (1-x)^(n+2).
Linear recurrence for row n: A(n,k) = Sum_{j=1..n+1} -binomial(j-n-2,j) * A(n,k-j).
G.f. for column k: (1 - (1-x^2)^k) / (x*(1-x)^k).

A325004 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the facets of a regular n-dimensional orthotope using up to k colors.

Original entry on oeis.org

1, 4, 1, 9, 6, 1, 16, 24, 10, 1, 25, 70, 57, 15, 1, 36, 165, 240, 126, 21, 1, 49, 336, 800, 730, 252, 28, 1, 64, 616, 2226, 3270, 2008, 462, 36, 1, 81, 1044, 5390, 11991, 11880, 5006, 792, 45, 1, 100, 1665, 11712, 37450, 56133, 38970, 11440, 1287, 55, 1
Offset: 1

Views

Author

Robert A. Russell, Mar 23 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.
Also the number of oriented colorings of the vertices of a regular n-dimensional orthoplex using up to k colors.

Examples

			Array begins with A(1,1):
1  4    9    16     25      36       49        64        81        100 ...
1  6   24    70    165     336      616      1044      1665       2530 ...
1 10   57   240    800    2226     5390     11712     23355      43450 ...
1 15  126   730   3270   11991    37450    102726    253485     573265 ...
1 21  252  2008  11880   56133   221725    756288   2283876    6228145 ...
1 28  462  5006  38970  235235  1161832   4873128  17838492   58208920 ...
1 36  792 11440 116400  894465  5495896  28162368 124122780  481650400 ...
1 45 1287 24310 319815 3114540 23739310 148116618 782798490 3596651740 ...
For A(1,2) = 4, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses two colors.
		

Crossrefs

Cf. A325005 (unoriented), A325006 (chiral), A325007 (achiral), A325008 (exactly k colors)
Other n-dimensional polytopes: A324999 (simplex), A325012 (orthoplex)
Rows 1-3 are A000290, A006528, A047780.

Programs

  • Mathematica
    Table[Binomial[Binomial[d-n+2,2]+n-1,n]+Binomial[Binomial[d-n+1,2],n],{d,1,11},{n,1,d}] // Flatten

Formula

A(n,k) = binomial(binomial(k+1,2) + n-1, n) + binomial(binomial(k,2),n).
A(n,k) = Sum_{j=1..2n} A325008(n,j) * binomial(k,j).
A(n,k) = A325005(n,k) + A325006(n,k) = 2*A325005(n,k) - A325007(n,k) = 2*A325006(n,k) + A325007(n,k).
G.f. for row n: Sum{j=1..2n} A325008(n,j) * x^j / (1-x)^(j+1).
Linear recurrence for row n: T(n,k) = Sum_{j=0..2n} binomial(-2-j,2n-j) * T(n,k-1-j).
G.f. for column k: 1/(1-x)^binomial(k+1,2) + (1+x)^binomial(k,2) - 2.

A337883 Array read by descending antidiagonals: T(n,k) is the number of oriented colorings of the triangular faces of a regular n-dimensional simplex using k or fewer colors.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 15, 40, 1, 5, 36, 1197, 3504, 1, 6, 75, 18592, 9753615, 13724608, 1, 7, 141, 166885, 3056311808, 19854224207910, 3574466244480, 1, 8, 245, 1019880, 264940140875, 468488921670219776, 25959704193068472575379, 106607224611810055168, 1
Offset: 2

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

Each chiral pair is counted as two when enumerating oriented arrangements. An n-simplex has n+1 vertices. For n=2, the figure is a triangle with one triangular face. For n=3, the figure is a tetrahedron with 4 triangular faces. For higher n, the number of triangular faces is C(n+1,3).
Also the number of oriented colorings of the peaks of a regular n-dimensional simplex. A peak of an n-simplex is an (n-3)-dimensional simplex.

Examples

			The table begins with T(2,1):
 1    2       3          4            5              6               7 ...
 1    5      15         36           75            141             245 ...
 1   40    1197      18592       166885        1019880         4738153 ...
 1 3504 9753615 3056311808 264940140875 10156268150064 221646915632373 ...
For T(3,4)=36, the 34 achiral arrangements are AAAA, AAAB, AAAC, AAAD, AABB, AABC, AABD, AACC, AACD, AADD, ABBB, ABBC, ABBD, ABCC, ABDD, ACCC, ACCD, ACDD, ADDD, BBBB, BBBC, BBBD, BBCC, BBCD, BBDD, BCCC, BCCD, BCDD, BDDD, CCCC, CCCD, CCDD, CDDD, and DDDD. The chiral pair is ABCD-ABDC.
		

Crossrefs

Cf. A337884 (unoriented), A337885 (chiral), A337886 (achiral), A051168 (binary Lyndon words).
Other elements: A324999 (vertices), A327083 (edges).
Other polytopes: A337887 (orthotope), A337891 (orthoplex).
Rows 2-4 are A000027, A006008, A331350.

Programs

  • Mathematica
    m=2; (* dimension of color element, here a triangular face *)
    lw[n_,k_]:=lw[n, k]=DivisorSum[GCD[n,k],MoebiusMu[#]Binomial[n/#,k/#]&]/n (*A051168*)
    cxx[{a_, b_},{c_, d_}]:={LCM[a, c], GCD[a, c] b d}
    compress[x:{{, } ...}] := (s=Sort[x];For[i=Length[s],i>1,i-=1,If[s[[i,1]]==s[[i-1,1]], s[[i-1,2]]+=s[[i,2]]; s=Delete[s,i], Null]]; s)
    combine[a : {{, } ...}, b : {{, } ...}] := Outer[cxx, a, b, 1]
    CX[p_List, 0] := {{1, 1}} (* cycle index for partition p, m vertices *)
    CX[{n_Integer}, m_] := If[2m>n, CX[{n}, n-m], CX[{n},m] = Table[{n/k, lw[n/k, m/k]}, {k, Reverse[Divisors[GCD[n, m]]]}]]
    CX[p_List, m_Integer] := CX[p, m] = Module[{v = Total[p], q, r}, If[2 m > v, CX[p, v - m], q = Drop[p, -1]; r = Last[p]; compress[Flatten[Join[{{CX[q, m]}}, Table[combine[CX[q, m - j], CX[{r}, j]], {j, Min[m, r]}]], 2]]]]
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#, 2]]], pc[#] j^Total[CX[#, m+1]][[2]], 0] & /@ IntegerPartitions[n+1]]/((n+1)!/2)]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d+m-n], {d,8}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition using a formula for binary Lyndon words. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337884(n,k) + A337885(n,k) = 2*A337884(n,k) - A337886(n,k) = 2*A337885(n,k) + A337886(n,k).

A337895 Number of oriented colorings of the tetrahedral facets (or vertices) of a regular 4-dimensional simplex using n or fewer colors.

Original entry on oeis.org

1, 6, 21, 56, 127, 258, 483, 848, 1413, 2254, 3465, 5160, 7475, 10570, 14631, 19872, 26537, 34902, 45277, 58008, 73479, 92114, 114379, 140784, 171885, 208286, 250641, 299656, 356091, 420762, 494543, 578368, 673233
Offset: 1

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

Each chiral pair is counted as two when enumerating oriented arrangements. Also called a 5-cell or pentachoron. The Schläfli symbol is {3,3,3}, and it has 5 tetrahedral facets (vertices).
There are 60 elements in the rotation group of the 4-dimensional simplex. Each is an even permutation of the vertices and can be associated with a partition of 5 based on the conjugacy class of the permutation. The first formula is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Even Cycle Indices
5 24 x_5^1
311 20 x_1^2x_3^1
221 15 x_1^1x_2^2
11111 1 x_1^5

Examples

			For a(2)=6, the colors are AAAAA, AAAAB, AAABB, AABBB, ABBBB, and BBBBB.
		

Crossrefs

Cf. A000389(n+4) (unoriented), A000389(chiral), A132366(n-1) (achiral), A331350 (edges, faces), A337952 (8-cell vertices, 16-cell facets), A337956(16-cell vertices, 8-cell facets), A338948 (24-cell), A338964 (120-cell, 600-cell).
Row 4 of A324999 (oriented colorings of facets or vertices of an n-simplex).

Programs

  • Mathematica
    Table[n (24 + 35 n^2 + n^4)/60, {n, 40}]

Formula

a(n) = n * (24 + 35*n^2 + n^4) / 60.
a(n) = binomial[4+n,5] + binomial[n,5].
a(n) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4) + 2*C(n,5), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
a(n) = A000389(n+4) + A000389(n) = 2*A000389(n+4) - A132366(n-1) = 2*A000389(n) + A132366(n-1).
Showing 1-9 of 9 results.