cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000389 Binomial coefficients C(n,5).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349, 26334, 33649, 42504, 53130, 65780, 80730, 98280, 118755, 142506, 169911, 201376, 237336, 278256, 324632, 376992, 435897, 501942, 575757, 658008, 749398
Offset: 0

Views

Author

Keywords

Comments

a(n+4) is the number of inequivalent ways of coloring the vertices of a regular 4-dimensional simplex with n colors, under the full symmetric group S_5 of order 120, with cycle index (x1^5 + 10*x1^3*x2 + 20*x1^2*x3 + 15*x1*x2^2 + 30*x1*x4 + 20*x2*x3 + 24*x5)/120.
Figurate numbers based on 5-dimensional regular simplex. According to Hyun Kwang Kim, it appears that every nonnegative integer can be represented as the sum of g = 10 of these 5-simplex(n) numbers (compared with g=3 for triangular numbers, g=5 for tetrahedral numbers and g=8 for pentatope numbers). - Jonathan Vos Post, Nov 28 2004
The convolution of the nonnegative integers (A001477) with the tetrahedral numbers (A000292), which are the convolution of the nonnegative integers with themselves (making appropriate allowances for offsets of all sequences). - Graeme McRae, Jun 07 2006
a(n) is the number of terms in the expansion of (a_1 + a_2 + a_3 + a_4 + a_5 + a_6)^n. - Sergio Falcon, Feb 12 2007
Product of five consecutive numbers divided by 120. - Artur Jasinski, Dec 02 2007
Equals binomial transform of [1, 5, 10, 10, 5, 1, 0, 0, 0, ...]. - Gary W. Adamson, Feb 02 2009
Equals INVERTi transform of A099242 (1, 7, 34, 153, 686, 3088, ...). - Gary W. Adamson, Feb 02 2009
For a team with n basketball players (n>=5), this sequence is the number of possible starting lineups of 5 players, without regard to the positions (center, forward, guard) of the players. - Mohammad K. Azarian, Sep 10 2009
a(n) is the number of different patterns, regardless of order, when throwing (n-5) 6-sided dice. For example, one die can display the 6 numbers 1, 2, ..., 6; two dice can display the 21 digit-pairs 11, 12, ..., 56, 66. - Ian Duff, Nov 16 2009
Sum of the first n pentatope numbers (1, 5, 15, 35, 70, 126, 210, ...), see A000332. - Paul Muljadi, Dec 16 2009
Sum_{n>=0} a(n)/n! = e/120. Sum_{n>=4} a(n)/(n-4)! = 501*e/120. See A067764 regarding the second ratio. - Richard R. Forberg, Dec 26 2013
For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 4 elements, which is 3*C(n+1,5) (for n>=4), hence a(n) = 3*C(n+1,5) = 3*A000389(n+1). - Serhat Bulut, Mar 11 2015
a(n) = fallfac(n,5)/5! is also the number of independent components of an antisymmetric tensor of rank 5 and dimension n >= 1. Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Number of compositions (ordered partitions) of n+1 into exactly 6 parts. - Juergen Will, Jan 02 2016
Number of weak compositions (ordered weak partitions) of n-5 into exactly 6 parts. - Juergen Will, Jan 02 2016
a(n+3) could be the general number of all geodetic graphs of diameter n>=2 homeomorphic to the Petersen Graph. - Carlos Enrique Frasser, May 24 2018
From Robert A. Russell, Dec 24 2020: (Start)
a(n) is the number of chiral pairs of colorings of the 5 tetrahedral facets (or vertices) of the regular 4-D simplex (5-cell, pentachoron, Schläfli symbol {3,3,3}) using subsets of a set of n colors. Each member of a chiral pair is a reflection but not a rotation of the other.
a(n+4) is the number of unoriented colorings of the 5 tetrahedral facets of the regular 4-D simplex (5-cell, pentachoron) using subsets of a set of n colors. Each chiral pair is counted as one when enumerating unoriented arrangements. (End)
For integer m and positive integer r >= 4, the polynomial a(n) + a(n + m) + a(n + 2*m) + ... + a(n + r*m) in n has its zeros on the vertical line Re(n) = (4 - r*m)/2 in the complex plane. - Peter Bala, Jun 02 2024

Examples

			G.f. = x^5 + 6*x^6 + 21*x^7 + 56*x^8 + 126*x^9 + 252*x^10 + 462*x^11 + ...
For A={1,2,3,4}, the only subset with 4 elements is {1,2,3,4}; sum of 2 minimum elements of this subset: a(4) = 1+2 = 3 = 3*C(4+1,5).
For A={1,2,3,4,5}, the subsets with 4 elements are {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}; sum of 2 smallest elements of each subset: a(5) = (1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 18 = 3*C(5+1,5). - _Serhat Bulut_, Mar 11 2015
a(6) = 6 from the six independent components of an antisymmetric tensor A of rank 5 and dimension 6: A(1,2,3,4,5), A(1,2,3,4,6), A(1,2,3,5,6), A(1,2,4,5,6), A(1,3,4,5,6), A(2,3,4,5,6). See the Dec 10 2015 comment. - _Wolfdieter Lang_, Dec 10 2015
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • Gupta, Hansraj; Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A099242. - Gary W. Adamson, Feb 02 2009
Cf. A242023. A104712 (fourth column, k=5).
5-cell colorings: A337895 (oriented), A132366(n-1) (achiral).
Unoriented colorings: A063843 (5-cell edges, faces), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338949 (24-cell), A338965 (600-cell vertices, 120-cell facets).
Chiral colorings: A331352 (5-cell edges, faces), A337954 (8-cell vertices, 16-cell facets), A234249 (16-cell vertices, 8-cell facets), A338950 (24-cell), A338966 (600-cell vertices, 120-cell facets).

Programs

  • Haskell
    a000389 n = a000389_list !! n
    a000389_list = 0 : 0 : f [] a000217_list where
       f xs (t:ts) = (sum $ zipWith (*) xs a000217_list) : f (t:xs) ts
    -- Reinhard Zumkeller, Mar 03 2015, Apr 13 2012
    
  • Magma
    [Binomial(n, 5): n in [0..40]]; // Vincenzo Librandi, Mar 12 2015
  • Maple
    f:=n->(1/120)*(n^5-10*n^4+35*n^3-50*n^2+24*n): seq(f(n), n=0..60);
    ZL := [S, {S=Prod(B,B,B,B,B,B), B=Set(Z, 1 <= card)}, unlabeled]: seq(combstruct[count](ZL, size=n+1), n=0..42); # Zerinvary Lajos, Mar 13 2007
    A000389:=1/(z-1)**6; # Simon Plouffe, 1992 dissertation
  • Mathematica
    Table[Binomial[n, 5], {n, 5, 50}] (* Stefan Steinerberger, Apr 02 2006 *)
    CoefficientList[Series[x^5 / (1 - x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 12 2015 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,0,0,0,0,1},50] (* Harvey P. Dale, Jul 17 2016 *)
  • PARI
    (conv(u,v)=local(w); w=vector(length(u),i,sum(j=1,i,u[j]*v[i+1-j])); w);
    (t(n)=n*(n+1)/2); u=vector(10,i,t(i)); conv(u,u)
    

Formula

G.f.: x^5/(1-x)^6.
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)/120.
a(n) = (n^5-10*n^4+35*n^3-50*n^2+24*n)/120. (Replace all x_i's in the cycle index with n.)
a(n+2) = Sum_{i+j+k=n} i*j*k. - Benoit Cloitre, Nov 01 2002
Convolution of triangular numbers (A000217) with themselves.
Partial sums of A000332. - Alexander Adamchuk, Dec 19 2004
a(n) = -A110555(n+1,5). - Reinhard Zumkeller, Jul 27 2005
a(n+3) = (1/2!)*(d^2/dx^2)S(n,x)|A049310.%20-%20_Wolfdieter%20Lang">{x=2}, n>=2, one half of second derivative of Chebyshev S-polynomials evaluated at x=2. See A049310. - _Wolfdieter Lang, Apr 04 2007
a(n) = A052787(n+5)/120. - Zerinvary Lajos, Apr 26 2007
Sum_{n>=5} 1/a(n) = 5/4. - R. J. Mathar, Jan 27 2009
For n>4, a(n) = 1/(Integral_{x=0..Pi/2} 10*(sin(x))^(2*n-9)*(cos(x))^9). - Francesco Daddi, Aug 02 2011
Sum_{n>=5} (-1)^(n + 1)/a(n) = 80*log(2) - 655/12 = 0.8684411114... - Richard R. Forberg, Aug 11 2014
a(n) = -a(4-n) for all n in Z. - Michael Somos, Oct 07 2014
0 = a(n)*(+a(n+1) + 4*a(n+2)) + a(n+1)*(-6*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Oct 07 2014
a(n) = 3*C(n+1, 5) = 3*A000389(n+1). - Serhat Bulut, Mar 11 2015
From Ilya Gutkovskiy, Jul 23 2016: (Start)
E.g.f.: x^5*exp(x)/120.
Inverse binomial transform of A054849. (End)
From Robert A. Russell, Dec 24 2020: (Start)
a(n) = A337895(n) - a(n+4) = (A337895(n) - A132366(n-1)) / 2 = a(n+4) - A132366(n-1).
a(n+4) = A337895(n) - a(n) = (A337895(n) + A132366(n-1)) / 2 = a(n) + A132366(n-1).
a(n+4) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4) + 1*C(n,5), where the coefficient of C(n,k) is the number of unoriented pentachoron colorings using exactly k colors. (End)

Extensions

Corrected formulas that had been based on other offsets. - R. J. Mathar, Jun 16 2009
I changed the offset to 0. This will require some further adjustments to the formulas. - N. J. A. Sloane, Aug 01 2010

A338964 Number of oriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using subsets of a set of n colors.

Original entry on oeis.org

1, 184614999414571937405905419562272, 249584763877004334779608333505026056531601345365910986, 245395425663664490219902430658740012166428009430164733569180712873472
Offset: 1

Views

Author

Robert A. Russell, Dec 04 2020

Keywords

Comments

Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. There are 7200 elements in the rotation group of the 120-cell. They divide into 41 conjugacy classes. The first formula is obtained by averaging the vertex (or facet) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Count Even Cycle Indices Count Even Cycle Indices
1 x_1^120 400 x_2^3x_6^19
450 x_1^4x_2^58 20+20 x_6^20
1 x_2^60 144+144 x_2^5x_10^11
400 x_1^6x_3^38 4*12+2*144 x_10^12
20+20 x_3^40 600+600 x_12^10
144+144 x_1^10x_5^22 4*240 x_15^8
30+30 x_4^30 4*360 x_20^6
4*12+2*144 x_5^24 4*240 x_30^4
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide formulas here.
For the 600 facets of the 600-cell (vertices of the 120-cell), the cycle indices are:
Count Even Cycle Indices Count Even Cycle Indices
1 x_1^600 400 x_2^6x_6^98
450 x_1^4x_2^298 20+20 x_6^100
1 x_2^300 4*12+4*144 x_10^60
400 x_1^12x_3^196 600+600 x_12^50
20+20 x_3^200 4*240 x_15^40
30+30 x_4^150 4*360 x_20^30
4*12+4*144 x_5^120 4*240 x_30^20
The formula is (960*n^20 + 1440*n^30 + 960*n^40 + 1200*n^50 + 624*n^60 + 40*n^100 + 400*n^104 + 624*n^120 + 60*n^150 + 40*n^200 + 400*n^208 + n^300 + 450*n^302 + n^600) / 7200.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the cycle indices are:
Count Even Cycle Indices Count Even Cycle Indices
1 x_1^720 2*20+400 x_6^120
450 x_1^8x_2^356 144+144 x_2^5x_10^71
1 x_2^360 4*12+2*144 x_10^72
2*20+400 x_3^240 600+600 x_12^60
30+30 x_4^180 4*240 x_15^48
144+144 x_1^10x_5^142 4*360 x_20^36
4*12+2*144 x_5^144 4*240 x_30^24
The formula is (960*n^24 + 1440*n^36 + 960*n^48 + 1200*n^60 + 336*n^72 + 288*n^76 + 440*n^120 + 336*n^144 + 288*n^152 + 60*n^180 + 440*n^240 + n^360 + 450*n^364 + n^720) / 7200.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the cycle indices are:
Count Even Cycle Indices Count Even Cycle Indices
1 x_1^1200 400 x_2^3x_6^199
450 x_1^8x_2^596 20+20 x_6^200
1 x_2^600 4*12+4*144 x_10^120
400 x_1^6x_3^398 600+600 x_12^100
20+20 x_3^400 4*240 x_15^80
30+30 x_4^300 4*360 x_20^60
4*12+4*144 x_5^240 4*240 x_30^40
The formula is (960*n^40 + 1440*n^60 + 960*n^80 + 1200*n^100 + 624*n^120 + 40*n^200 + 400*n^202 + 624*n^240 + 60*n^300 + 40*n^400 + 400*n^404 + n^600 + 450*n^604 + n^1200) / 7200.

Crossrefs

Cf. A338965 (unoriented), A338966 (chiral), A338967 (achiral), A338980 (exactly n colors), A337895 (5-cell), A337952 (8-cell vertices, 16-cell facets), A337956(16-cell vertices, 8-cell facets), A338948 (24-cell).

Programs

  • Mathematica
    Table[(960n^4+1440n^6+960n^8+1200n^10+336n^12+288n^16+40n^20+400n^22+336n^24+60n^30+288n^32+40n^40+400n^44 +n^60+450n^62 +n^120)/7200,{n,10}]
  • PARI
    a(n)=(960*n^4+1440*n^6+960*n^8+1200*n^10+336*n^12+288*n^16+40*n^20+400*n^22+336*n^24+60*n^30+288*n^32+40*n^40+400*n^44+n^60+450*n^62+n^120)/7200 \\ Charles R Greathouse IV, Jul 05 2024

Formula

a(n) = (960*n^4 + 1440*n^6 + 960*n^8 + 1200*n^10 + 336*n^12 + 288*n^16 + 40*n^20 + 400*n^22 + 336*n^24 + 60* n^30 + 288*n^32 + 40*n^40 + 400*n^44 + n^60 + 450*n^62 + n^120) / 7200.
a(n) = Sum_{j=1..Min(n,120)} A338980(n) * binomial(n,j).
a(n) = A338965(n) + A338966(n) = 2*A338965(n) - A338967(n) = 2*A338966(n) + A338967(n).

A132366 Partial sum of centered tetrahedral numbers A005894.

Original entry on oeis.org

1, 6, 21, 56, 125, 246, 441, 736, 1161, 1750, 2541, 3576, 4901, 6566, 8625, 11136, 14161, 17766, 22021, 27000, 32781, 39446, 47081, 55776, 65625, 76726, 89181, 103096, 118581, 135750, 154721, 175616, 198561, 223686, 251125, 281016, 313501, 348726, 386841
Offset: 0

Views

Author

Jonathan Vos Post, Nov 09 2007

Keywords

Comments

From Robert A. Russell, Oct 09 2020: (Start)
a(n-1) is the number of achiral colorings of the 5 tetrahedral facets (or vertices) of a regular 4-dimensional simplex using n or fewer colors. An achiral arrangement is identical to its reflection. The 4-dimensional simplex is also called a 5-cell or pentachoron. Its Schläfli symbol is {3,3,3}.
There are 60 elements in the automorphism group of the 4-dimensional simplex that are not in its rotation group. Each is an odd permutation of the vertices and can be associated with a partition of 5 based on the conjugacy class of the permutation. The first formula for a(n-1) is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Odd Cycle Indices
41 30 x_1x_4^1
32 20 x_2^1x_3^1
2111 10 x_1^3x_2^1 (End)

Crossrefs

Cf. A337895 (oriented), A000389(n+4) (unoriented), A000389 (chiral), A331353 (5-cell edges, faces), A337955 (8-cell vertices, 16-cell facets), A337958 (16-cell vertices, 8-cell facets), A338951 (24-cell), A338967 (120-cell, 600-cell).
a(n-1) = A325001(4,n).

Programs

  • Mathematica
    Do[Print[n, " ", (n^4 + 4 n^3 + 11 n^2 + 14 n + 6)/6 ], {n, 0, 10000}]
    Accumulate[Table[(2n+1)(n^2+n+3)/3,{n,0,40}]] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,6,21,56,125},40] (* Harvey P. Dale, Feb 26 2020 *)

Formula

a(n) = (n^4 + 4*n^3 + 11*n^2 + 14*n + 6)/6 = (n^2+2*n+6)*(n+1)^2/6.
G.f.: -(x+1)*(x^2+1) / (x-1)^5. - Colin Barker, May 04 2013
From Robert A. Russell, Oct 09 2020: (Start)
a(n-1) = n^2 * (5 + n^2) / 6.
a(n-1) = binomial(n+4,5) - binomial(n,5) = A000389(n+4) - A000389(n).
a(n-1) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n-1) = 2*A000389(n+4) - A337895(n) = A337895(n) - 2*A000389(n) .
G.f. for a(n-1): x * (x+1) * (x^2+1) / (1-x)^5. (End)
From Amiram Eldar, Feb 14 2023: (Start)
Sum_{n>=0} 1/a(n) = Pi^2/5 + 3/25 - 3*Pi*coth(sqrt(5)*Pi)/(5*sqrt(5)).
Sum_{n>=0} (-1)^n/a(n) = Pi^2/10 - 3/25 + 3*Pi*cosech(sqrt(5)*Pi)/(5*sqrt(5)). (End)
a(n) = A006007(n) + A006007(n+1) = A002415(n) + A002415(n+2). - R. J. Mathar, Jun 05 2025

Extensions

Corrected offset, Mathematica program by Tomas J. Bulka (tbulka(AT)rodincoil.com), Sep 02 2009

A338948 Number of oriented colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.

Original entry on oeis.org

1, 30968, 490710246, 488689596200, 103480643539150, 8226360697111116, 332606338581801018, 8198553131754111456, 138483409168412322525, 1736111115543474313600, 17100230356306262961356, 138015359782116886130568
Offset: 1

Views

Author

Robert A. Russell, Nov 17 2020

Keywords

Comments

Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It is self-dual. There are 576 elements in the rotation group of the 24-cell. They divide into 20 conjugacy classes. The first formula is obtained by averaging the vertex (or facet) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Count Even Cycle Indices Count Even Cycle Indices
1 x_1^24 36 x_2^2x_4^5
18 x_1^4x_2^10 32 x_2^3x_6^3
72 x_1^2x_2^11 6+6 x_4^6
1 x_2^12 8+8+32 x_6^4
32 x_1^6x_3^6 72+72 x_8^3
36 x_1^4x_4^5 48+48 x_12^2
8+8+32 x_3^8

Crossrefs

Cf. A338949 (unoriented), A338950 (chiral), A338951 (achiral), A338952 (edges, faces), A337895 (5-cell), A337952 (8-cell vertices, 16-cell facets), A337956 (16-cell vertices, 8-cell facets), A338964 (120-cell, 600-cell).

Programs

  • Mathematica
    Table[(96n^2+144n^3+48n^4+44n^6+36n^7+48n^8+36n^9+33n^12+72n^13+18n^14+n^24)/576,{n,15}]

Formula

a(n) = (96*n^2 + 144*n^3 + 48*n^4 + 44*n^6 + 36*n^7 + 48*n^8 + 36*n^9 + 33*n^12 + 72*n^13 + 18*n^14 + n^24) / 576.
a(n) = 1*C(n,1) + 30966*C(n,2) + 490617345*C(n,3) + 486726941020*C(n,4) + 101042102350935*C(n,5) + 7612797366078810*C(n,6) + 277177820254686645*C(n,7) + 5762279787373449480*C(n,8) + 75992221900428179850*C(n,9) + 682000715348622816300*C(n,10) + 4372841482811937689400*C(n,11) + 20731958137729666674000*C(n,12) + 74473828855001644068000*C(n,13) + 206154110634594043521600*C(n,14) + 444564429725793817440000*C(n,15) + 751083930907369899840000*C(n,16) + 994782360855398955840000*C(n,17) + 1027991414661948696960000*C(n,18) + 819571017352669021440000*C(n,19) + 494068244672052610560000*C(n,20) + 217722453472796912640000*C(n,21) + 66156028946382735360000*C(n,22) + 12387424687382384640000*C(n,23) + 1077167364120207360000*C(n,24), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
a(n) = A338949(n) + A338950(n) = 2*A338949(n) - A338951(n) = 2*A338950(n) + A338951(n).

A324999 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 4, 1, 9, 4, 1, 16, 11, 5, 1, 25, 24, 15, 6, 1, 36, 45, 36, 21, 7, 1, 49, 76, 75, 56, 28, 8, 1, 64, 119, 141, 127, 84, 36, 9, 1, 81, 176, 245, 258, 210, 120, 45, 10, 1, 100, 249, 400, 483, 463, 330, 165, 55, 11, 1, 121, 340, 621, 848, 931, 792, 495, 220, 66, 12, 1
Offset: 1

Views

Author

Robert A. Russell, Mar 23 2019

Keywords

Comments

For n=1, the figure is a line segment with two vertices. For n=2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with four triangular faces. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Each of its n+1 facets is a regular (n-1)-dimensional simplex. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.

Examples

			The array begins with A(1,1):
  1  4  9  16  25   36   49    64    81   100   121    144    169    196 ...
  1  4 11  24  45   76  119   176   249   340   451    584    741    924 ...
  1  5 15  36  75  141  245   400   621   925  1331   1860   2535   3381 ...
  1  6 21  56 127  258  483   848  1413  2254  3465   5160   7475  10570 ...
  1  7 28  84 210  463  931  1744  3087  5215  8470  13300  20280  30135 ...
  1  8 36 120 330  792 1717  3440  6471 11560 19778  32616  52104  80952 ...
  1  9 45 165 495 1287 3003  6436 12879 24355 43923  76077 127257 206493 ...
  1 10 55 220 715 2002 5005 11440 24311 48630 92433 168180 294645 499422 ...
  ...
For A(1,2) = 4, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses two colors. For A(2,2)=4, the triangle may have 0, 1, 2, or 3 edges of one color.
		

Crossrefs

Cf. A325000 (unoriented), A325000(n,k-n) (chiral), A325001 (achiral), A325002 (exactly k colors), A327083 (edges, ridges), A337883 (faces, peaks), A325004 (orthotope facets, orthoplex vertices), A325012 (orthoplex facets, orthotope vertices).
Rows 1-4 are A000290, A006527, A006008, A337895.

Programs

  • Mathematica
    Table[Binomial[d+1,n+1] + Binomial[d+1-n,n+1], {d,1,15}, {n,1,d}] // Flatten

Formula

A(n,k) = binomial(n+k,n+1) + binomial(k,n+1).
A(n,k) = Sum_{j=1..n+1} A325002(n,j) * binomial(k,j).
A(n,k) = A325000(n,k) + A325000(n,k-n) = 2*A325000(n,k) - A325001(n,k) = 2*A325000(n,k-n) + A325001(n,k).
G.f. for row n: (x + x^(n+1)) / (1-x)^(n+2).
Linear recurrence for row n: A(n,k) = Sum_{j=1..n+2} -binomial(j-n-3,j) * A(n,k-j).
G.f. for column k: (1 - 2*(1-x)^k + (1-x^2)^k) / (x*(1-x)^k) - 2*k.

A337952 Number of oriented colorings of the 16 tetrahedral facets of a hyperoctahedron or of the 16 vertices of a tesseract.

Original entry on oeis.org

1, 496, 230076, 22456756, 795467350, 14697611496, 173107727191, 1466088119056, 9651378868011, 52083991149400, 239323201136866, 962942859342036, 3465720389989936, 11343525530430016, 34210497067620525
Offset: 1

Views

Author

Robert A. Russell, Oct 03 2020

Keywords

Comments

Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the tesseract and the hyperoctahedron are {4,3,3} and {3,3,4} respectively. Both figures are regular 4-D polyhedra and they are mutually dual. There are 192 elements in the rotation group of the tesseract. Each involves a permutation of the axes that can be associated with a partition of 4 based on the conjugacy class of the permutation. This table shows the cycle indices for each rotation by partition. The first formula is obtained by averaging these cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Even Cycle Indices
4 6 8x_8^2
31 8 4x_1^4x_3^4 + 4x_2^2x_6^2
22 3 4x_1^4x_2^6 + 4x_4^4
211 6 4x_2^8 + 4x_4^4
1111 1 x_1^16 + 7x_2^8

Crossrefs

Cf. A128767 (unoriented), A337954 (chiral), A337955 (achiral).
Other elements: A331358 (tesseract edges, hyperoctahedron faces), A331354 (tesseract faces, hyperoctahedron edges), A337956 (tesseract facets, hyperoctahedron vertices).
Other polychora: A337895 (4-simplex facets/vertices), A338948 (24-cell), A338964 (120-cell, 600-cell).
Row 4 of A325012 (orthoplex facets, orthotope vertices).

Programs

  • Mathematica
    Table[(n^16+12n^10+63n^8+68n^4+48n^2)/192,{n,30}]

Formula

a(n) = n^2 * (n^14 + 12*n^8 + 63*n^6 + 68*n^2 + 48) / 192.
a(n) = 1*C(n,1) + 494*C(n,2) + 228591*C(n,3) + 21539424*C(n,4) + 685479375*C(n,5) + 10257064650*C(n,6) + 86151316860*C(n,7) + 449772354360*C(n,8) + 1551283253100*C(n,9) + 3661969537800*C(n,10) + 6015983173200*C(n,11) + 6878457986400*C(n,12) + 5371454088000*C(n,13) + 2733402672000*C(n,14) + 817296480000*C(n,15) + 108972864000*C(n,16), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
a(n) = A128767(n) + A337954(n) = 2*A128767(n) - A337955(n) = 2*A337954(n) + A337955(n).

A337956 Number of oriented colorings of the 8 cubic facets of a tesseract or of the 8 vertices of a hyperoctahedron.

Original entry on oeis.org

1, 15, 126, 730, 3270, 11991, 37450, 102726, 253485, 573265, 1205556, 2384460, 4475926, 8031765, 13858860, 23106196, 37372545, 58837851, 90421570, 135971430, 200486286, 290376955, 413769126, 580852650, 804281725
Offset: 1

Views

Author

Robert A. Russell, Oct 03 2020

Keywords

Comments

Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the tesseract and the hyperoctahedron are {4,3,3} and {3,3,4} respectively. Both figures are regular 4-D polyhedra and they are mutually dual.

Crossrefs

Cf. A337957 (unoriented), A234249(n+1) (chiral), A337958 (achiral).
Other elements: A331354 (hyperoctahedron edges, tesseract faces), A331358 (hyperoctahedron faces, tesseract edges), A337952 (hyperoctahedron facets, tesseract vertices).
Other polychora: A337895 (5-cell), A338948 (24-cell), A338964 (120-cell, 600-cell).
Row 4 of A325004 (orthotope facets, orthoplex vertices).

Programs

  • Mathematica
    Table[Binomial[Binomial[n+1,2]+3,4] + Binomial[Binomial[n,2],4],{n,30}]

Formula

a(n) = binomial(binomial(n+1,2)+3,4) + binomial(binomial(n,2),4).
a(n) = n * (n+1) * (n^6 - n^5 + 7*n^4 + 29*n^3 + 16*n^2 - 4*n + 48) / 192.
a(n) = 1*C(n,1) + 13*C(n,2) + 84*C(n,3) + 312*C(n,4) + 735*C(n,5) + 1020*C(n,6) + 735*C(n,7) + 210*C(n,8), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
a(n) = A337957(n) + A234249(n+1) = 2*A337957(n) - A337958(n) = 2*A234249(n+1) + A337958(n).
From Stefano Spezia, Oct 04 2020: (Start)
G.f.: x*(1 + 6*x + 27*x^2 + 52*x^3 + 102*x^4 + 21*x^5 + x^6)/(1 - x)^9.
a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-8) for n > 8.
(End)

A338980 Number of oriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.

Original entry on oeis.org

0, 1, 184614999414571937405905419562270, 249584763877004334779054488506782340719383629107224173, 245395425663663491880846922641400894840783985813370231599231766603156
Offset: 0

Views

Author

Robert A. Russell, Dec 13 2020

Keywords

Comments

Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. For n>120, a(n) = 0.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide generating functions here using bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k.
For the 600 facets of the 600-cell (vertices of the 120-cell), the generating function is 2*bp(20)/15 + bp(30)/5 + 2*bp(40)/15 + bp(50)/6 + 13*bp(60)/150 + bp(100)/180 + bp(104)/18 + 13*bp(120)/150 + bp(150)/120 + bp(200)/180 + bp(208)/18 + bp(300)/7200 + bp(302)/16 + bp(600)/7200.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the generating function is 2*bp(24)/15 + bp(36)/5 + 2*bp(48)/15 + bp(60)/6 + 7*bp(72)/150 + bp(76)/25 + 11*bp(120)/180 + 7*bp(144)/150 + bp(152)/25 + bp(180)/120 + 11*bp(240)/180 + bp(360)/7200 + bp(364)/16 + bp(720)/7200.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the generating function is 2*bp(40)/15 + bp(60)/5 + 2*bp(80)/15 + bp(100)/6 + 13*bp(120)/150 + bp(200)/180 + bp(202)/18 + 13*bp(240)/150 + bp(300)/120 + bp(400)/180 + bp(404)/18 + bp(600)/7200 + bp(604)/16 + bp(1200)/7200.

Crossrefs

Cf. A338981 (unoriented), A338982 (chiral), A338983 (achiral), A338964 (up to n colors), A337895 (5-cell), A337952 (8-cell vertices, 16-cell facets), A337956 (16-cell vertices, 8-cell facets), A338948 (24-cell).

Programs

  • Mathematica
    bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
    CoefficientList[2bp[4]/15+bp[6]/5+2bp[8]/15+bp[10]/6+7bp[12]/150+bp[16]/25+bp[20]/180+bp[22]/18+7bp[24]/150+bp[30]/120+bp[32]/25+bp[40]/180+bp[44]/18+bp[60]/7200+bp[62]/16+bp[120]/7200,x]

Formula

A338964(n) = Sum_{j=1..Min(n,120)} a(n) * binomial(n,j).
a(n) = A338981(n) + A338982(n) = 2*A338981(n) - A338983(n) = 2*A338982(n) + A338983(n).
G.f.: 2*bp(4)/15 + bp(6)/5 + 2*bp(8)/15 + bp(10)/6 + 7*bp(12)/150 + bp(16)/25 + bp(20)/180 + bp(22)/18 + 7*bp(24)/150 + bp(30)/120 + bp(32)/25 + bp(40)/180 + bp(44)/18 + bp(60)/7200 + bp(62)/16 + bp(120)/7200, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277.
Showing 1-8 of 8 results.