A338964
Number of oriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using subsets of a set of n colors.
Original entry on oeis.org
1, 184614999414571937405905419562272, 249584763877004334779608333505026056531601345365910986, 245395425663664490219902430658740012166428009430164733569180712873472
Offset: 1
-
Table[(960n^4+1440n^6+960n^8+1200n^10+336n^12+288n^16+40n^20+400n^22+336n^24+60n^30+288n^32+40n^40+400n^44 +n^60+450n^62 +n^120)/7200,{n,10}]
-
a(n)=(960*n^4+1440*n^6+960*n^8+1200*n^10+336*n^12+288*n^16+40*n^20+400*n^22+336*n^24+60*n^30+288*n^32+40*n^40+400*n^44+n^60+450*n^62+n^120)/7200 \\ Charles R Greathouse IV, Jul 05 2024
A338981
Number of unoriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
Original entry on oeis.org
0, 1, 92307499707443390526727850063502, 124792381938502167392061689732085833655832902312754962, 122697712831831745940423467267565845711242845618544066030140191642464
Offset: 0
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[bp[4]/15+bp[6]/10+bp[8]/15+bp[10]/12+7bp[12]/300+bp[16]/50+bp[17]/10+bp[19]/10+bp[20]/360+bp[22]/36+bp[23]/12+7bp[24]/300+bp[27]/12+bp[30]/240+bp[31]/8+bp[32]/50+bp[40]/360+bp[44]/36+bp[60]/14400+bp[61]/240+bp[62]/32+bp[75]/240+bp[120]/14400,x]
A338982
Number of chiral pairs of colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
Original entry on oeis.org
0, 0, 92307499707128546879177569498768, 124792381938502167386992798774696507063550726794469211, 122697712831831745940423455373835049129541140194826165569091574960692
Offset: 0
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[bp[4]/15+bp[6]/10+bp[8]/15+bp[10]/12+7bp[12]/300+bp[16]/50-bp[17]/10-bp[19]/10+bp[20]/360+bp[22]/36-bp[23]/12+7bp[24]/300-bp[27]/12+bp[30]/240-bp[31]/8+bp[32]/50+bp[40]/360+bp[44]/36+bp[60]/14400-bp[61]/240+bp[62]/32-bp[75]/240+bp[120]/14400,x]
A338983
Number of chiral pairs of colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
Original entry on oeis.org
0, 1, 314843647550280564734, 5068890957389326592282175518285751, 11893730796581701705423717900461048616681772, 220581437248293418784474364671733389683204494492535
Offset: 0
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[bp[17]/5+bp[19]/5+bp[23]/6+bp[27]/6+bp[31]/4+bp[61]/120+bp[75]/120,x]
A338956
Number of oriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
Original entry on oeis.org
1, 137548893254081168086800766, 11046328890861010626464488614428032600986342, 10897746068335468788318134977474134922662053604436974448, 21912802868317153141871319582922663027477920477404414535105616050
Offset: 1
Cf.
A338957 (unoriented),
A338958 (chiral),
A338959 (achiral),
A338952 (up to n colors),
A338948 (vertices, facets),
A331350 (5-cell),
A331358 (8-cell edges, 16-cell faces),
A331354 (16-cell edges, 8-cell faces),
A338980 (120-cell, 600-cell).
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (* binomial series *)
Drop[CoefficientList[bp[8]/6+bp[12]/4+bp[16]/12+bp[18]/18+7bp[24]/48+bp[32]/12+bp[36]/18+19bp[48]/576+bp[50]/8+bp[96]/576,x],1]
Showing 1-5 of 5 results.
Comments