A338966
Number of chiral pairs of colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using subsets of a set of n colors.
Original entry on oeis.org
92307499707128546879177569498768, 124792381938502167387269721273817892704188259502965515, 122697712831832245109951209382504597654581237223625701047064169830144
Offset: 2
-
Table[(960n^4 +1440n^6 +960n^8 +1200n^10 +336n^12 +288n^16 -1440n^17 -1440n^19 +40n^20 +400n^22 -1200n^23 +336n^24 -1200n^27 +60n^30 -1800n^31 +288n^32 +40n^40 +400n^44 +n^60 -60n^61 +450n^62 -60n^75 +n^120)/14400, {n,2,10}]
A338980
Number of oriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
Original entry on oeis.org
0, 1, 184614999414571937405905419562270, 249584763877004334779054488506782340719383629107224173, 245395425663663491880846922641400894840783985813370231599231766603156
Offset: 0
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[2bp[4]/15+bp[6]/5+2bp[8]/15+bp[10]/6+7bp[12]/150+bp[16]/25+bp[20]/180+bp[22]/18+7bp[24]/150+bp[30]/120+bp[32]/25+bp[40]/180+bp[44]/18+bp[60]/7200+bp[62]/16+bp[120]/7200,x]
A338981
Number of unoriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
Original entry on oeis.org
0, 1, 92307499707443390526727850063502, 124792381938502167392061689732085833655832902312754962, 122697712831831745940423467267565845711242845618544066030140191642464
Offset: 0
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[bp[4]/15+bp[6]/10+bp[8]/15+bp[10]/12+7bp[12]/300+bp[16]/50+bp[17]/10+bp[19]/10+bp[20]/360+bp[22]/36+bp[23]/12+7bp[24]/300+bp[27]/12+bp[30]/240+bp[31]/8+bp[32]/50+bp[40]/360+bp[44]/36+bp[60]/14400+bp[61]/240+bp[62]/32+bp[75]/240+bp[120]/14400,x]
A338983
Number of chiral pairs of colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
Original entry on oeis.org
0, 1, 314843647550280564734, 5068890957389326592282175518285751, 11893730796581701705423717900461048616681772, 220581437248293418784474364671733389683204494492535
Offset: 0
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[bp[17]/5+bp[19]/5+bp[23]/6+bp[27]/6+bp[31]/4+bp[61]/120+bp[75]/120,x]
A338958
Number of chiral pairs of colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
Original entry on oeis.org
68774446614978208476646592, 5523164445430504871588714239322107782006441, 5448873034167734394145221152621861950913444709790439644, 10956401434158576570935650756489255491646473924447332613392130825
Offset: 2
Cf.
A338956 (oriented),
A338957 (unoriented),
A338959 (achiral),
A338954 (up to n colors),
A338950 (vertices, facets),
A331352 (5-cell),
A331360 (8-cell edges, 16-cell faces),
A331356 (16-cell edges, 8-cell faces),
A338982 (120-cell, 600-cell).
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (*binomial series*)
Drop[CoefficientList[bp[8]/12+bp[12]/8-bp[16]/24-bp[18]/18-bp[20]/6-5bp[24]/96+bp[32]/24+bp[36]/36-5bp[48]/1152+bp[50]/16-bp[52]/96-bp[60]/96+bp[96]/1152,x],2]
Showing 1-5 of 5 results.
Comments