A338967
Number of achiral colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using subsets of a set of n colors.
Original entry on oeis.org
1, 314843647550280564736, 5068890957390271123224826359979956, 11893730816857265534982913331475052373213184, 220581496716947452381892465686737251285705566406250
Offset: 1
-
Table[(24n^17+24n^19+20n^23+20n^27+30n^31+n^61+n^75)/120,{n,10}]
-
a(n)=(24*n^17+24*n^19+20*n^23+20*n^27+30*n^31+n^61+n^75)/120 \\ Charles R Greathouse IV, Jul 05 2024
A338980
Number of oriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
Original entry on oeis.org
0, 1, 184614999414571937405905419562270, 249584763877004334779054488506782340719383629107224173, 245395425663663491880846922641400894840783985813370231599231766603156
Offset: 0
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[2bp[4]/15+bp[6]/5+2bp[8]/15+bp[10]/6+7bp[12]/150+bp[16]/25+bp[20]/180+bp[22]/18+7bp[24]/150+bp[30]/120+bp[32]/25+bp[40]/180+bp[44]/18+bp[60]/7200+bp[62]/16+bp[120]/7200,x]
A338981
Number of unoriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
Original entry on oeis.org
0, 1, 92307499707443390526727850063502, 124792381938502167392061689732085833655832902312754962, 122697712831831745940423467267565845711242845618544066030140191642464
Offset: 0
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[bp[4]/15+bp[6]/10+bp[8]/15+bp[10]/12+7bp[12]/300+bp[16]/50+bp[17]/10+bp[19]/10+bp[20]/360+bp[22]/36+bp[23]/12+7bp[24]/300+bp[27]/12+bp[30]/240+bp[31]/8+bp[32]/50+bp[40]/360+bp[44]/36+bp[60]/14400+bp[61]/240+bp[62]/32+bp[75]/240+bp[120]/14400,x]
A338982
Number of chiral pairs of colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
Original entry on oeis.org
0, 0, 92307499707128546879177569498768, 124792381938502167386992798774696507063550726794469211, 122697712831831745940423455373835049129541140194826165569091574960692
Offset: 0
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[bp[4]/15+bp[6]/10+bp[8]/15+bp[10]/12+7bp[12]/300+bp[16]/50-bp[17]/10-bp[19]/10+bp[20]/360+bp[22]/36-bp[23]/12+7bp[24]/300-bp[27]/12+bp[30]/240-bp[31]/8+bp[32]/50+bp[40]/360+bp[44]/36+bp[60]/14400-bp[61]/240+bp[62]/32-bp[75]/240+bp[120]/14400,x]
A338959
Number of achiral colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
Original entry on oeis.org
1, 24124751133507582, 883287060135783817036973460, 27692672230411020835164184856095160, 18069944152044184972628509749308321354400, 1018093811663859334508633754250963606821400320
Offset: 1
Cf.
A338956 (oriented),
A338957 (unoriented),
A338958 (chiral),
A338955 (up to n colors),
A338951 (vertices, facets),
A331353 (5-cell),
A331361 (8-cell edges, 16-cell faces),
A331357 (16-cell edges, 8-cell faces),
A338983 (120-cell, 600-cell).
-
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (*binomial series*)
Drop[CoefficientList[bp[16]/6+bp[18]/6+bp[20]/3+bp[24]/4+bp[48]/24+bp[52]/48+bp[60]/48,x],1]
Showing 1-5 of 5 results.
Comments