A338964 Number of oriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using subsets of a set of n colors.
1, 184614999414571937405905419562272, 249584763877004334779608333505026056531601345365910986, 245395425663664490219902430658740012166428009430164733569180712873472
Offset: 1
Links
- Robert A. Russell, Table of n, a(n) for n = 1..30
- Index entries for linear recurrences with constant coefficients, order 121.
Crossrefs
Programs
-
Mathematica
Table[(960n^4+1440n^6+960n^8+1200n^10+336n^12+288n^16+40n^20+400n^22+336n^24+60n^30+288n^32+40n^40+400n^44 +n^60+450n^62 +n^120)/7200,{n,10}]
-
PARI
a(n)=(960*n^4+1440*n^6+960*n^8+1200*n^10+336*n^12+288*n^16+40*n^20+400*n^22+336*n^24+60*n^30+288*n^32+40*n^40+400*n^44+n^60+450*n^62+n^120)/7200 \\ Charles R Greathouse IV, Jul 05 2024
Formula
a(n) = (960*n^4 + 1440*n^6 + 960*n^8 + 1200*n^10 + 336*n^12 + 288*n^16 + 40*n^20 + 400*n^22 + 336*n^24 + 60* n^30 + 288*n^32 + 40*n^40 + 400*n^44 + n^60 + 450*n^62 + n^120) / 7200.
a(n) = Sum_{j=1..Min(n,120)} A338980(n) * binomial(n,j).
Comments