cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A000543 Number of inequivalent ways to color vertices of a cube using at most n colors.

Original entry on oeis.org

0, 1, 23, 333, 2916, 16725, 70911, 241913, 701968, 1798281, 4173775, 8942021, 17930628, 34009053, 61518471, 106823025, 179003456, 290715793, 459239463, 707740861, 1066780100, 1576090341, 2286660783, 3263156073, 4586706576
Offset: 0

Views

Author

Clint. C. Williams (Clintwill(AT)aol.com)

Keywords

Comments

Here inequivalent means under the action of the rotation group of the cube, of order 24, which in its action on the vertices has cycle index (x1^8 + 9*x2^4 + 6*x4^2 + 8*x1^2*x3^2)/24.
Also the number of ways to color the faces of a regular octahedron with n colors, counting mirror images separately.
From Robert A. Russell, Oct 08 2020: (Start)
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular octahedron and cube are {3,4} and {4,3} respectively. They are mutually dual.
There are 24 elements in the rotation group of the regular octahedron/cube. They divide into five conjugacy classes. The first formula is obtained by averaging the cube vertex (octahedron face) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Even Cycle Indices
Identity 1 x_1^8
Vertex rotation 8 x_1^2x_3^2
Edge rotation 6 x_2^4
Small face rotation 6 x_4^2
Large face rotation 3 x_2^4 (End)

References

  • N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see p. 147).

Crossrefs

Cf. A128766 (unoriented), A337896 (chiral), A337897 (achiral).
Other elements: A060530 (edges), A047780 (cube faces, octahedron vertices).
Cf. A006008 (tetrahedron), A000545 (dodecahedron faces, icosahedron vertices), A054472 (icosahedron faces, dodecahedron vertices).
Row 3 of A325012 (orthotope vertices, orthoplex facets) and A337891 (orthoplex faces, orthotope peaks).

Programs

  • Magma
    [(1/24)*n^2*(n^6+17*n^2+6): n in [0..30]]; // Vincenzo Librandi, Apr 15 2012
  • Maple
    f:= n->(1/24)*n^2*(n^6+17*n^2+6); seq(f(n), n=0..40);
  • Mathematica
    CoefficientList[Series[x*(1+x)*(1+13*x+149*x^2+514*x^3+149*x^4+13*x^5+x^6)/(1-x)^9,{x,0,30}],x] (* Vincenzo Librandi, Apr 15 2012 *)
    Table[(n^8+17n^4+6n^2)/24,{n,0,30}] (* Robert A. Russell, Oct 08 2020 *)

Formula

a(n) = (1/24)*n^2*(n^6+17*n^2+6). (Replace all x_i's in the cycle index with n.)
G.f.: x*(1+x)*(1+13*x+149*x^2+514*x^3+149*x^4+13*x^5+x^6)/(1-x)^9. - Colin Barker, Jan 29 2012
a(n) = 1*C(n,1) + 21*C(n,2) + 267*C(n,3) + 1718*C(n,4) + 5250*C(n,5) + 7980*C(n,6) + 5880*C(n,7) + 1680*C(n,8), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
a(n) = A128766(n) + A337896(n) = 2*A128766(n) - A337897(n) = 2*A337896(n) + A337897(n). - Robert A. Russell, Oct 08 2020

Extensions

Entry revised by N. J. A. Sloane, Jan 03 2005

A325004 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the facets of a regular n-dimensional orthotope using up to k colors.

Original entry on oeis.org

1, 4, 1, 9, 6, 1, 16, 24, 10, 1, 25, 70, 57, 15, 1, 36, 165, 240, 126, 21, 1, 49, 336, 800, 730, 252, 28, 1, 64, 616, 2226, 3270, 2008, 462, 36, 1, 81, 1044, 5390, 11991, 11880, 5006, 792, 45, 1, 100, 1665, 11712, 37450, 56133, 38970, 11440, 1287, 55, 1
Offset: 1

Views

Author

Robert A. Russell, Mar 23 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.
Also the number of oriented colorings of the vertices of a regular n-dimensional orthoplex using up to k colors.

Examples

			Array begins with A(1,1):
1  4    9    16     25      36       49        64        81        100 ...
1  6   24    70    165     336      616      1044      1665       2530 ...
1 10   57   240    800    2226     5390     11712     23355      43450 ...
1 15  126   730   3270   11991    37450    102726    253485     573265 ...
1 21  252  2008  11880   56133   221725    756288   2283876    6228145 ...
1 28  462  5006  38970  235235  1161832   4873128  17838492   58208920 ...
1 36  792 11440 116400  894465  5495896  28162368 124122780  481650400 ...
1 45 1287 24310 319815 3114540 23739310 148116618 782798490 3596651740 ...
For A(1,2) = 4, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses two colors.
		

Crossrefs

Cf. A325005 (unoriented), A325006 (chiral), A325007 (achiral), A325008 (exactly k colors)
Other n-dimensional polytopes: A324999 (simplex), A325012 (orthoplex)
Rows 1-3 are A000290, A006528, A047780.

Programs

  • Mathematica
    Table[Binomial[Binomial[d-n+2,2]+n-1,n]+Binomial[Binomial[d-n+1,2],n],{d,1,11},{n,1,d}] // Flatten

Formula

A(n,k) = binomial(binomial(k+1,2) + n-1, n) + binomial(binomial(k,2),n).
A(n,k) = Sum_{j=1..2n} A325008(n,j) * binomial(k,j).
A(n,k) = A325005(n,k) + A325006(n,k) = 2*A325005(n,k) - A325007(n,k) = 2*A325006(n,k) + A325007(n,k).
G.f. for row n: Sum{j=1..2n} A325008(n,j) * x^j / (1-x)^(j+1).
Linear recurrence for row n: T(n,k) = Sum_{j=0..2n} binomial(-2-j,2n-j) * T(n,k-1-j).
G.f. for column k: 1/(1-x)^binomial(k+1,2) + (1+x)^binomial(k,2) - 2.

A325014 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthoplex using up to k colors.

Original entry on oeis.org

0, 1, 0, 3, 0, 0, 6, 3, 1, 0, 10, 15, 66, 94, 0, 15, 45, 920, 97974, 1047816, 0, 21, 105, 6350, 10700090, 481141220994, 400140831558512, 0, 28, 210, 29505, 390081800, 4802390808840576, 74515656021475803734579625, 527471421741473576372948457251328, 0
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. The chiral colorings of its facets come in pairs, each the reflection of the other.
Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.

Examples

			Array begins with A(1,1):
0  1     3        6        10         15          21           28 ...
0  0     3       15        45        105         210          378 ...
0  1    66      920      6350      29505      106036       317856 ...
0 94 97974 10700090 390081800 7280687610 86121007714 730895668104 ...
For A(2,3)=3, each square has one of the three colors on two adjacent edges.
		

Crossrefs

Cf. A325012 (oriented), A325013 (unoriented), A325015 (achiral), A325018 (exactly k colors).
Other n-dimensional polytopes: A007318(k,n+1) (simplex), A325006 (orthotope).
Rows 1-2 are A161680, A050534.

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&, n, EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[((CI0[#] - CI1[#]) pc[#]) & /@ IntegerPartitions[n]])/(n! 2^n)] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k
    Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.
A(k,n) = A325012(n,k) - A325013(n,k) = (A325012(n,k) - A325015(n,k)) / 2 = A325013(n,k) - A325015(n,k).
A(n,k) = Sum_{j=2..2^n} A325018(n,j) * binomial(k,j).

A325015 Array read by descending antidiagonals: T(n,k) is the number of achiral colorings of the facets of a regular n-dimensional orthoplex using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 18, 21, 1, 5, 40, 201, 308, 1, 6, 75, 1076, 34128, 180342, 1, 7, 126, 4025, 1056576, 2945136213, 366975285216, 1, 8, 196, 11901, 15303750, 2932338749408, 103863386269870076808, 10316179427644325573474464, 1
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. An achiral coloring is identical to its reflection.
Also the number of achiral colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.

Examples

			Array begins with T(1,1):
1   2     3       4        5         6         7          8 ...
1   6    18      40       75       126       196        288 ...
1  21   201    1076     4025     11901     29841      66256 ...
1 308 34128 1056576 15303750 136236276 865711763 4296782848 ...
...
For T(2,2)=6, two squares have all edges the same color, two have three edges the same color, one has opposite edges the same color, and one has opposite edges different colors.
		

Crossrefs

Cf. A325012 (oriented), A325013 (unoriented), A325014 (chiral), A325019 (exactly k colors).
Other n-dimensional polytopes: A325001 (simplex), A325007 (orthotope).
Rows 1-2 are A000027, A002411.

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&, n, EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[(CI1[#] pc[#]) & /@ IntegerPartitions[n]])/(n! 2^(n - 1))] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k
    Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.
T(n,k) = 2*A325013(n,k) - A325012(n,k) = A325012(n,k) - 2*A325014(n,k) = A325013(n,k) - A325014(n,k).
T(n,k) = Sum_{j=1..3*2^(n-2)} A325019(n,j) * binomial(k,j).

A324999 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 4, 1, 9, 4, 1, 16, 11, 5, 1, 25, 24, 15, 6, 1, 36, 45, 36, 21, 7, 1, 49, 76, 75, 56, 28, 8, 1, 64, 119, 141, 127, 84, 36, 9, 1, 81, 176, 245, 258, 210, 120, 45, 10, 1, 100, 249, 400, 483, 463, 330, 165, 55, 11, 1, 121, 340, 621, 848, 931, 792, 495, 220, 66, 12, 1
Offset: 1

Views

Author

Robert A. Russell, Mar 23 2019

Keywords

Comments

For n=1, the figure is a line segment with two vertices. For n=2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with four triangular faces. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Each of its n+1 facets is a regular (n-1)-dimensional simplex. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.

Examples

			The array begins with A(1,1):
  1  4  9  16  25   36   49    64    81   100   121    144    169    196 ...
  1  4 11  24  45   76  119   176   249   340   451    584    741    924 ...
  1  5 15  36  75  141  245   400   621   925  1331   1860   2535   3381 ...
  1  6 21  56 127  258  483   848  1413  2254  3465   5160   7475  10570 ...
  1  7 28  84 210  463  931  1744  3087  5215  8470  13300  20280  30135 ...
  1  8 36 120 330  792 1717  3440  6471 11560 19778  32616  52104  80952 ...
  1  9 45 165 495 1287 3003  6436 12879 24355 43923  76077 127257 206493 ...
  1 10 55 220 715 2002 5005 11440 24311 48630 92433 168180 294645 499422 ...
  ...
For A(1,2) = 4, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses two colors. For A(2,2)=4, the triangle may have 0, 1, 2, or 3 edges of one color.
		

Crossrefs

Cf. A325000 (unoriented), A325000(n,k-n) (chiral), A325001 (achiral), A325002 (exactly k colors), A327083 (edges, ridges), A337883 (faces, peaks), A325004 (orthotope facets, orthoplex vertices), A325012 (orthoplex facets, orthotope vertices).
Rows 1-4 are A000290, A006527, A006008, A337895.

Programs

  • Mathematica
    Table[Binomial[d+1,n+1] + Binomial[d+1-n,n+1], {d,1,15}, {n,1,d}] // Flatten

Formula

A(n,k) = binomial(n+k,n+1) + binomial(k,n+1).
A(n,k) = Sum_{j=1..n+1} A325002(n,j) * binomial(k,j).
A(n,k) = A325000(n,k) + A325000(n,k-n) = 2*A325000(n,k) - A325001(n,k) = 2*A325000(n,k-n) + A325001(n,k).
G.f. for row n: (x + x^(n+1)) / (1-x)^(n+2).
Linear recurrence for row n: A(n,k) = Sum_{j=1..n+2} -binomial(j-n-3,j) * A(n,k-j).
G.f. for column k: (1 - 2*(1-x)^k + (1-x^2)^k) / (x*(1-x)^k) - 2*k.

A325013 Array read by descending antidiagonals: A(n,k) is the number of unoriented colorings of the facets of a regular n-dimensional orthoplex using up to k colors.

Original entry on oeis.org

1, 3, 1, 6, 6, 1, 10, 21, 22, 1, 15, 55, 267, 402, 1, 21, 120, 1996, 132102, 1228158, 1, 28, 231, 10375, 11756666, 484086357207, 400507806843728, 1, 36, 406, 41406, 405385550, 4805323147589984, 74515759884862073604656433, 527471432057653004017274030725792, 1
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. Two unoriented colorings are the same if congruent; chiral pairs are counted as one.
Also the number of unoriented colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.

Examples

			Array begins with A(1,1):
1   3      6       10        15         21          28           36 ...
1   6     21       55       120        231         406          666 ...
1  22    267     1996     10375      41406      135877       384112 ...
1 402 132102 11756666 405385550 7416923886 86986719477 735192450952 ...
For A(2,2)=6, two squares have all edges the same color, two have three edges the same color, one has opposite edges the same color, and one has opposite edges different colors.
		

Crossrefs

Cf. A325012 (oriented), A325014 (chiral), A325015 (achiral), A325017 (exactly k colors).
Other n-dimensional polytopes: A325000 (simplex), A325005 (orthotope).
Rows 1-4 are A000217, A002817, A128766, A128767; column 2 is A000616.

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&, n, EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[((CI0[#] + CI1[#]) pc[#]) & /@ IntegerPartitions[n]])/(n! 2^n)] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k
    Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = A325012(n,k) - A325014(n,k) = (A325012(n,k) + A325015(n,k)) / 2 = A325014(n,k) + A325015(n,k).
A(n,k) = Sum_{j=1..2^n} A325017(n,j) * binomial(k,j).

A325016 Triangle read by rows: T(n,k) is the number of oriented colorings of the facets of a regular n-dimensional orthoplex using exactly k colors. Row n has 2^n columns.

Original entry on oeis.org

1, 2, 1, 4, 9, 6, 1, 21, 267, 1718, 5250, 7980, 5880, 1680, 1, 494, 228591, 21539424, 685479375, 10257064650, 86151316860, 449772354360, 1551283253100, 3661969537800, 6015983173200, 6878457986400, 5371454088000, 2733402672000, 817296480000, 108972864000
Offset: 1

Views

Author

Robert A. Russell, May 28 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.
Also the number of oriented colorings of the vertices of a regular n-dimensional orthotope (cube) using exactly k colors.

Examples

			Triangle begins with T(1,1):
  1  2
  1  4   9    6
  1 21 267 1718 5250 7980 5880 1680
For T(2,2)=4, two squares have three edges the same color, one has opposite edges the same color, and one has opposite edges different colors.
		

Crossrefs

Cf. A325017 (unoriented), A325018 (chiral), A325019 (achiral), A325012 (up to k colors).
Other n-dimensional polytopes: A325002 (simplex), A325008 (orthotope).

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&, n, EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, (a37 /@ sub)/2}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[(CI0[#] pc[#]) & /@ IntegerPartitions[n]])/(n! 2^(n - 1))] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k (* A325012 *)
    Table[LinearSolve[Table[Binomial[i,j],{i,1,2^n},{j,1,2^n}],Table[array[n,k],{k,1,2^n}]],{n,1,6}] // Flatten

Formula

A325012(n,k) = Sum_{j=1..2^n} T(n,j) * binomial(k,j).
T(n,k) = A325017(n,k) + A325018(n,k) = 2*A325017(n,k) - A325019(n,k) = 2*A325018(n,k) + A325019(n,k).

A325019 Triangle read by rows: T(n,k) is the number of achiral colorings of the facets of a regular n-dimensional orthoplex using exactly k colors. Row n has 2^n columns.

Original entry on oeis.org

1, 0, 1, 4, 3, 0, 1, 19, 141, 394, 450, 180, 0, 0, 1, 306, 33207, 921908, 10359075, 59584470, 197644440, 400752240, 505197000, 386694000, 164656800, 29937600, 0, 0, 0, 0
Offset: 1

Views

Author

Robert A. Russell, Jun 09 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. An achiral coloring is identical to its reflection. The last 2^(n-2) columns of row n are zero; there are no achiral colorings with that many colors.
Also the number of achiral colorings of the vertices of a regular n-dimensional orthotope (cube) using exactly k colors.

Examples

			Triangle begins with T(1,1):
1  0
1  4   3   0
1 19 141 394 450 180 0 0
For T(2,3)=3, each square has one of the three colors on two opposite edges.
		

Crossrefs

Cf. A325016 (oriented), A325017 (unoriented), A325018 (chiral), A325015 (up to k colors).
Other n-dimensional polytopes: A325003 (simplex), A325011 (orthotope).

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&,n,EvenQ],MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n,MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even permutation *)
    CI1[{n_Integer}] := CI1[{{n}}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, (a37 /@ sub)/2}]]] 2^(n-1); (* odd permutation *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]] == s[[i - 1, 1]], s[[i - 1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[(CI1[#] pc[#]) & /@ IntegerPartitions[n]])/(n! 2^(n - 1))] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k (* A325012 *)
    Table[LinearSolve[Table[Binomial[i,j],{i,1,2^n},{j,1,2^n}],Table[array[n,k],{k,1,2^n}]],{n,1,6}] // Flatten

Formula

A325015(n,k) = Sum_{j=1..2^n} T(n,j) * binomial(k,j).
T(n,k) = 2*A325017(n,k) - A325016(n,k) = A325016(n,k) - 2*A325018(n,k) = A325017(n,k) - A325018(n,k).

A337407 Array read by descending antidiagonals: T(n,k) is the number of oriented colorings of the edges of a regular n-dimensional orthotope (hypercube) using k or fewer colors.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 24, 218, 1, 5, 70, 22815, 22409620, 1, 6, 165, 703760, 9651199594275, 629648865090036960064, 1, 7, 336, 10194250, 96076801068337216, 76983765319971869475595432431084156, 272443651709491352597039736725488834366101875164020736, 1
Offset: 1

Views

Author

Robert A. Russell, Aug 26 2020

Keywords

Comments

Each chiral pair is counted as two when enumerating oriented arrangements. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges. For n=3, the figure is a cube with 12 edges. The number of edges is n*2^(n-1).
Also the number of oriented colorings of the regular (n-2)-dimensional simplexes in a regular n-dimensional orthoplex.

Examples

			Table begins with T(1,1):
1   2     3      4        5        6         7          8           9 ...
1   6    24     70      165      336       616       1044        1665 ...
1 218 22815 703760 10194250 90775566 576941778 2863870080 11769161895 ...
For T(2,2)=6, the arrangements are AAAA, AAAB, AABB, ABAB, ABBB, and BBBB.
		

Crossrefs

Cf. A337408 (unoriented), A337409 (chiral), A337410 (achiral).
Rows 1-4 are A000027, A006528, A060530, A331358.
Cf. A327083 (simplex edges), A337411 (orthoplex edges), A325012 (orthotope vertices).

Programs

  • Mathematica
    m=1; (* dimension of color element, here an edge *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n - m]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]], (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]),0]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
    array[n_, k_] := row[n] /. b -> k
    Table[array[n,d+m-n], {d,7}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337408(n,k) + A337409(n,k) = 2*A337408(n,k) - A337410(n,k) = 2*A337409(n,k) + A337410(n,k).

A337952 Number of oriented colorings of the 16 tetrahedral facets of a hyperoctahedron or of the 16 vertices of a tesseract.

Original entry on oeis.org

1, 496, 230076, 22456756, 795467350, 14697611496, 173107727191, 1466088119056, 9651378868011, 52083991149400, 239323201136866, 962942859342036, 3465720389989936, 11343525530430016, 34210497067620525
Offset: 1

Views

Author

Robert A. Russell, Oct 03 2020

Keywords

Comments

Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the tesseract and the hyperoctahedron are {4,3,3} and {3,3,4} respectively. Both figures are regular 4-D polyhedra and they are mutually dual. There are 192 elements in the rotation group of the tesseract. Each involves a permutation of the axes that can be associated with a partition of 4 based on the conjugacy class of the permutation. This table shows the cycle indices for each rotation by partition. The first formula is obtained by averaging these cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Even Cycle Indices
4 6 8x_8^2
31 8 4x_1^4x_3^4 + 4x_2^2x_6^2
22 3 4x_1^4x_2^6 + 4x_4^4
211 6 4x_2^8 + 4x_4^4
1111 1 x_1^16 + 7x_2^8

Crossrefs

Cf. A128767 (unoriented), A337954 (chiral), A337955 (achiral).
Other elements: A331358 (tesseract edges, hyperoctahedron faces), A331354 (tesseract faces, hyperoctahedron edges), A337956 (tesseract facets, hyperoctahedron vertices).
Other polychora: A337895 (4-simplex facets/vertices), A338948 (24-cell), A338964 (120-cell, 600-cell).
Row 4 of A325012 (orthoplex facets, orthotope vertices).

Programs

  • Mathematica
    Table[(n^16+12n^10+63n^8+68n^4+48n^2)/192,{n,30}]

Formula

a(n) = n^2 * (n^14 + 12*n^8 + 63*n^6 + 68*n^2 + 48) / 192.
a(n) = 1*C(n,1) + 494*C(n,2) + 228591*C(n,3) + 21539424*C(n,4) + 685479375*C(n,5) + 10257064650*C(n,6) + 86151316860*C(n,7) + 449772354360*C(n,8) + 1551283253100*C(n,9) + 3661969537800*C(n,10) + 6015983173200*C(n,11) + 6878457986400*C(n,12) + 5371454088000*C(n,13) + 2733402672000*C(n,14) + 817296480000*C(n,15) + 108972864000*C(n,16), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
a(n) = A128767(n) + A337954(n) = 2*A128767(n) - A337955(n) = 2*A337954(n) + A337955(n).
Showing 1-10 of 12 results. Next